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Abstract

Meson production from excited nucleons is important in the study of baryon res-

onances and pion photoproduction is attracting much attention. To date a rather

large amount of unpolarized cross-section measurements have been reported for both

single- and double-pion photoproduction. However, polarization observables provide

complementary information as they probe different combinations of transition ampli-

tudes. The database for polarization observables remains quite sparse. Double-pion

photoproduction have been studied in Hall B at Jefferson Lab with linearly polarized

tagged photon beams incident on longitudinally polarized protons. The experiment

covered center-of-mass energies between 1.4 GeV and 2.3 GeV. The target was a

FROzen Spin butanol Target (FROST) and the final-state particles were detected by

the CEBAF Large Acceptance Spectrometer (CLAS). In various polarization configu-

rations, asymmetries of the experimental yields are constructed to extract polarization

observables. In order to evaluate the background from unpolarized bound nucleons in

the butanol target, the data collected from an additional unpolarized carbon target

is used. A set of single- and double-polarization observables, Pz, P s
z and P c

z were

extracted; the double-polarization observables for the first time. The double-pion ob-

servables show even or odd symmetries, as expected by parity conservation, and are

compared with results of an effective Lagrangian model by A. Fix. The model predic-

tions have the same symmetry behavior as the data and resemble main features of the

data in most kinematic bins. In the comparison with models, the data test our un-

derstanding of the nucleon structure, establishes nucleon excitation and non-resonant

reaction amplitudes, and possibly help to identify new baryon resonances.
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Chapter 1

Introduction

The study and investigation of the world’s micro structure and characteristics is of

essential importance for the development of the understanding of the world we are

living in. Baryons have attracted much attention for the key value to reveal the

standard model, the strong force, and the underlying theory of Quantum chromody-

namics (QCD). Despite numerous experiments and theoretical studies on the topic,

unsolved questions on baryon resonances remain and are the motivation for further

research.

1.1 Standard Model and QCD

The theories and discoveries of thousands of physicists have resulted in a remarkable

insight into the fundamental structure of matter: ordinary matter in the universe is

found to be made of a few basic building blocks called fundamental particles, quarks

and leptons, governed by four fundamental forces (the strong, weak, electromagnetic,

and gravitational forces). The best understanding of how these particles and three

of the forces (not including gravity) interact with each other is encapsulated in the

Standard Model of particle physics. Developed in the early 1970s, it has successfully

explained almost all experimental results and precisely predicted a wide variety of

phenomena. Over time and through many experiments, the Standard Model has

become established as a well-tested physics theory.

Quantum chromodynamics (QCD) is a quantum field theory describing the inter-

actions between color charged quarks and gluons which make up hadrons (baryons

1
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and mesons). Quarks carry one of three different color charges and one of six flavor

quantum numbers (up, down, strange, charm, bottom, and top). QCD is a non-

abelian gauge theory with color SU(3) symmetry. The theory is an important part

of the Standard Model of particle physics. A huge body of experimental evidence for

QCD has been gathered over the years [1].

1.2 Baryon spectroscopy

Baryons are strongly interacting fermions with the baryon number B equal to 1.

In addition to the nucleons, there are other baryon families, like the ∆ particles,

Λ particles, Σ particles, and Ξ particles [2]. All baryons except of the proton are

unstable. The proton has a lifetime exceeding approximately 1029 years. Unstable

baryons will eventually decay into protons.

Baryons containing up, down, and strange quarks (u, d, and s) with strangeness

quantum number S and electric charge Q can be organized into an octet, for baryons

with spin 1/2, and into a decuplet, for baryons with spin 3/2. These representations

are based on the antisymmetric wave-function and the symmetric behavior of the

flavor quantum number. The octet and decuplet are representations of the of the

SU(3) flavor group. Figures 1.1 and 1.2 show the decuplet and octet baryons.

Baryon spectroscopy is concerned with the study of the properties of baryons,

especially their masses and decays. These studies have provided essential clues that

led to the development of QCD. The measurement of the spectrum of the excited

states of the nucleons is also providing insight into their structure and internal degrees

of freedom.

Figure 1.3 compares the experimental N -resonance spectrum with calculations

in the framework of a relativistic quark model [4]. While the model describes well

the lowest-mass resonances for each total spin and parity, Jπ, it predicts many more

states at higher masses than have experimentally been observed. This is the well-

2
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Figure 1.1 Octet: Baryons composed of u, d, and s quarks with spin-1/2 are
classified based on the strangeness flavor quantum number and the electric charge.
The figure is from Ref. [3].

Figure 1.2 Decuplet: Baryons composed of u, d, and s quarks with spin-3/2 are
classified based on the strangeness flavor quantum number and the electric charge.
The figure is from Ref. [3].

3
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Figure 1.3 Experimental N -resonance spectrum (right part of each column) and
calculated spectrum (left part of each column) in a relativistic quark model [4]. The
resonances are classified by the total spin J and parity π. The figure is from
Ref. [4].

known “Missing Resonance” problem [5].

One difficulty in experiments is that these resonances are overlap each other, due

to their broad widths. So far, most nucleon resonances have been established by

elastic pion scattering experiments, e.g. [6]. However, states that decouple from Nπ

are suppressed [7]. This led scientists to study nucleon resonances in other reactions.

The difficulty can be avoided by photo-production experiments with the potential to

measure a richer baryon spectrum. Because of that, the experiments of photo-induced

meson production off the nucleon is more researched recently and world wide.

A large amount of data on photo-production of many final-states were accumu-

lated, and these data made a significant impact on the extracted properties of baryon

resonances. A number of groups have undertaken couple-channel analyses of pion-

and photo-induced channels and new resonances were found or determined to better

4
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precision [1]. However, the work is still far away from the final success to completely

explain the nature of baryon resonances.

The higher lying excited states decay not only through the single-meson emission

to the ground state of the nucleon, but also through the intermediate excited states

[8] with emission of double or multiple mesons. The multiple-stage decay induces the

double- or triple- meson production reactions, which dominate the decay branching

ratio at higher excitation energies. Figure 1.4 shows the total cross sections for various

meson photoproduction channels in the photon energy range from 200 to 800 MeV.

Figure 1.4 Total cross section for meson-photoproduction with contribution from
individual channels. The figure is from Ref. [9].

In the second resonance region the situation becomes more complicated due to the

presence of three strongly overlapping resonances, the N(1440)1/2+, N(1520)3/2−,

and N(1535)1/2−. Moreover, these resonances decay into various mesons, giving Nπ,

Nη, and Nππ final-states as represented in Fig. 1.4. In this region, the first challenge

5
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is therefore to find methods to disentangle these resonances and understand their

individual contributions. This has been done for single-pion photoproduction, in

which partial-wave analyses have provided a good separation of the three resonances

in this channel. The N(1535)1/2− resonance has a much larger branching ratio (≈

42%) into Nη than any other resonances. The η photoproduction reaction is therefore

preferred by experimentalists and theorists to study this resonance. The large η-

decay branching ratio is difficult to explain within the framework of quark models

and has triggered many interrogations and many publications about the nature of

the N(1535)1/2−. Finally, our understanding of the second resonance region would

not be completed without an accurate description of the double-pion channel, which

contributes to more than half of the cross section in this energy region. Double-pion

photoproduction will be extensively discussed in the following sections.

A series of models have been constructed to describe the baryon resonances. The

first attempt was coming from the standard harmonic oscillator model, which is still a

main tool trying to simplify the problem. One example is the quark shell model [10],

which constructed a very simple multi-dimensional harmonic potential to confine the

quarks. From this model, the resonance spectrum can be calculated and compared

to the data. In a later stage, a series of QCD modified harmonic oscillator models

were proposed to address the resonance spectrum. But the appearance of charm

quantum number [11] made the things more complicated. The SU(3) was extended

to SU(4) flavor symmetric group after the discovery of c quarks. The large mass of

the additional quark broke the symmetry.

Continued research on both experimental and theoretical sides is needed to ad-

dress the problem. On the theoretical side, the number of resonances relates to the

effective degree of freedom of non-strange baryons [12]. The model of three equivalent

valence quarks is a popular assumption. One of the alternatives is the quark-diquark

clustering model [13, 14, 15], where a point like quark pair is considered as staying in

6



www.manaraa.com

its ’frozen’ ground state. If two of the three quarks are bound together, the number

of effective degree of freedom is decreased and fewer resonances are predicted. The

non-relativistic flux-tube model [16, 17] is the third option. More resonance states

are predicted in this model through the inclusion of possible excitations of flux tubes

as predicted by lattice QCD.

The mass spectrum of excited baryon states is also calculated from several quark

models (QM). The non-relativistic QM from Isgur and Karl [18], for example, leads

to a good qualitative understanding of the negative parity resonances by assuming

a structure of three constituent quarks that are confined by a harmonic oscillator

potential and interact through a residual one-gluon-exchange interaction. In order to

describe the positive parity states, they had to introduce an additional anharmonic-

ity into the confining oscillator potential that lowers the mass of the first positive

parity resonance (N∗(1440)) [19]. The relativized QM for baryons [20] gave a good

qualitative picture of the baryonic spectrum by using an interaction which can be

decomposed into a color Coulomb part, a confining interaction, a hyperfine interac-

tion, and a spin-orbit interaction between quarks. The confinement is provided by a

Y -type string interaction between all three quarks. One (of several) difficulties with

this model is that the low lying positive parity resonances are systematically over-

estimated by at least 100 MeV. A rather different interaction mechanism was used

by Glozman and Riska [21]. In their model, two quarks interact via pion exchange.

This flavor-dependent force is responsible for the low mass of the Roper resonance,

N∗(1440). Thus the two interaction mechanisms of the Glozman/Riska model and

the Isgur/Karl/Capstick model are quite different and it is not clear whether the

mass spectrum should be described by either one of these interactions or a mixture

of both [22].

The photo- and electro-excitation of baryon resonances have been studied by

several groups using different models. Li and Close [23] found the Q2 dependence of

7



www.manaraa.com

the γN → N∗ helicity amplitudes to be very sensitive to the structure of the Roper

resonance. While the non-relativistic three-quark model, q3, is not able to describe

the Q2 behavior, a hybrid quark-gluon model, q3G, was initially in agreement with

early experimental data. A similar conclusion was reached by Capstick [24], who

found large disagreement in the photo-production amplitude of the Roper between a

theoretical calculation in a non-relativistic q3 model, including relativistic corrections

and the experimental data. However, Capstick pointed out that relativistic effects

are very important in these amplitudes. They were able to describe the helicity

amplitudes using a relativized q3 QM. Recent electroexcitation data of the Roper

resonance from CLAS for Q2 up to 4.5 GeV2 provide strong evidence in favor of

N(1440)1/2+ as a first radial excitation of the q3 ground state and the presentation

of the Roper resonance as a q3G hybrid state is ruled out [25].

On the experimental side, most of the published data so far focused on unpolarized

cross-section and single-polarization observables, with the exclusive choice of either

the polarized beam, target, or recoil nucleon. The single-polarization observables are

more straightforward to access in both the experimental requirements and analysis

method.

However, in order to determine the complete picture of the contributing ampli-

tudes for the resonance production and decay mechanisms, the measurement of a set

of well chosen single- and double-polarization observables are necessary. This the-

sis focuses on the extraction of a set of single- and double-polarization observables

in a measurement with polarized beam and target. The reaction channel used is

γp→ pπ+π− . The double-pion decay channel dominates in the higher energy region,

which provides the possibility to investigate resonances higher than second resonance

region. In further, the resonances decay through a series of complex decay chains,

with the presence of N∗, ρ, and ∆. Measuring the decay chains is beneficial for the

better understanding of the decay mechanism. It also provides various methodologies
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for the data analysis. Another advantage of the double-pion channel is the multi-

ple choice of kinematic variables. Unlike the single-pion reaction, where the cross

section is only two-differential, the double-pion channel contains a complicated five-

differential cross section. A large variety of kinematic variable choices are available

to study the polarization observables under various conditions.

This thesis presents the first extraction of the beam-target double-polarization

observables P s
z and P c

z . The photon energy range is from 0.6 to 2.4 GeV, covering

the second resonance region and higher baryon resonances. Both of the observables

are the z-components for the double-polarization observables ~P s and ~P c; defined in

Eq. (2.4) below. In the experimental setting, both the photon beam and target proton

were polarized. The details of the experiment are illustrated in Chapter 3. By using

various combinations of polarized yields from different polarization orientations, a

set of asymmetries was constructed to isolate the observables for extraction. Due

to limited statistics, the observables could not be extracted differentially in all five

kinematic variables. The data were integrated over at least three out of five kinematic

variables to gain enough statistics. The results are finally compared with model pre-

dictions [26]. More and deeper discussion of the analysis are stated in Chapters 4

and 5. The research on this topic helps not only to enhance the world database for

single- and double-polarization observables. Together with the knowledge of other

polarization observables based on the future analyses and experiments, a global pic-

ture of observables is promising to reveal the mystery of baryon resonances and decay

mechanisms.

1.3 Models for the Double-Pion photoproduction

The total cross section of the γp → π+π0n and γp → π0π0p reactions have been

obtained for the first time using the large acceptance detector DAPHNE [27] and

high intensity tagged photon beams with energies from 400 to 800 MeV. The cross

9
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section of the channel γp → π+π−p has also been measured with good accuracy. In

this energy region the ∆(1232) and N(1520)3/2− resonances dominate the produc-

tion. DAPHNE-experiments have motivated several theorists to develop the model

for the γN → ππN reaction. The theoretical studies for the γp → π+π−p reaction

revealed that the double-pion photoproduction is dominated by the π∆(1232) inter-

mediate state, which arises from the ∆ Kroll-Ruderman and ∆ pion-pole term, shown

in Fig. 1.5 (a) and (b), and the N(1520)3/2− excitation in Fig. 1.5 (c) [28]. The in-

terference between the ∆ Kroll-Ruderman and N(1520)3/2− excitation processes is

essential to reproduce the energy dependence of the total cross section.

Figure 1.5 Diagrams for the double-pion production. (a) The ∆ Kroll-Ruderman
term, (b) the ∆ pion-pole term, (c) the N∗ → π∆ contribution, (d) the N∗ → ρN
contribution, (e) the ρ Kroll-Ruderman term. (f) The π∆ production accompanied
by the nucleon exchange. The figure is taken from Ref. [28].

Other efforts from the theory side are being carried out to study the double-

pion photoproduction. The Excited Baryon Analysis Center (EBAC) at Jefferson

Lab [29] was established in 2006 with the goal of performing a dynamical coupled-

channels analysis [30] of the world πN and γN scattering data in order to determine
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meson-baryon partial-wave amplitudes and to extract N∗ parameters. The devel-

oped dynamical coupled-channel (DCC) reaction model [31] is based on an energy-

independent Hamiltonian formulation and satisfies the essential two- and three-body

unitarity conditions. Since the bare N∗ states are defined as the eigenstates of the

Hamiltonian, in which the couplings to the meson-baryon continuum states are turned

off, the extracted bare states can be related to the hadron states from constituent

quark models and those from Dyson-Schwinger approaches. Within the EBAC model,

the bare N∗ states become resonance states through the coupled reaction processes.

Thus, the model explicitly allows one to distinguish between the couplings of the bare

N∗ states and the meson-cloud (meson-baryon dressing) effects. A brief overview of

EBAC results is given in [30]. First results from the DCC model were reported on

the pion-induced reactions πN → πN , πN → ηN , and πN → ππN . The application

of the model was also discussed for the analysis of π photoproduction as well as elec-

troproduction, which contains the channels γN , πN , ηN and ππN . A simultaneous

analysis of both single- and double-pion photoproduction is published. The authors

note that the analysis of the single-pion production reactions alone is not enough

to determine the amplitudes associated with the electromagnetic interactions. Both

channels are required for the extraction of reliable information on N∗ states below

W = 2 GeV.

A. Fix has given a model prediction of the value of the observables by using the

effective Lagrangian approach [26] for all the known decay processes. Figure 1.6

shows the cross section for the double-charged-pion process in the photon energy

range from 0.3 to 1.5 GeV. The results are compared with the experimental data.

The dash-dotted curve shows the contribution of the ∆ Kroll-Ruderman term plus

pion-pole term. The short dashed curve represents results including all resonance

terms while the long dashed curve is for ρ0 photoproduction via π0 and σ-exchange.

The solid curve shows the resulting cross section without ∆(1700)3/2− and the dotted
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one that for inclusion of ∆(1700)3/2−.

Figure 1.6 Total cross section for the double-charged-pion process in the photon
energy range from 0.3 to 1.5 GeV. Model calculations [26] are compared with
experimental data [32, 27]. Contributions of individual diagrams include the ∆
Kroll-Ruderman term plus pion-pole term (dash-dotted); all resonance terms (short
dashed); ρ0 photoproduction via π0 and σ-exchange (long dashed); and resulting
cross section without (solid) and with the ∆(1700)3/2− resonance (dotted). The
figure is taken from Ref. [26].

Another effort is from the Bonn-Gatchina (BnGa) Group [33, 34, 35]. The cross

sections for photo- and pion-induced production of baryon resonances and their par-

tial decay widths to the two-body and multi-body final-states are also calculated in

the framework of the operator expansion method. That approach is fully relativistic

invariant, and allows to perform combined analyses of different reactions imposing

directly the analysis and unitarity constraints. One method based on relativistic

invariant operators, which are constructed directly from the four-vectors of the parti-

cles, was published. In an analysis of single- and double-pion photoproduction data,
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the group showed that the observed resonance decay pattern is consistent with an

interpretation of the Roper resonance as first radial excitation of the nucleon [36].

The BnGa group has also performed a systematic search for new baryon resonances in

a multichannel partial-wave analysis [37]. The analysis of data included recent cross-

section and polarization data from the double-pion photoproduction reaction. New

resonances were found [37], including the N(1880)1/2+, N(1895)1/2−, N(1875)3/2−,

N(2150)3/2−, and N(2060)5/2−.

The analysis of a large number of single-meson photoproduction reactions per-

formed in the framework of this method revealed a number of new baryon states.

1.4 Existing Measurements

Figure 1.7 shows recent total cross section data for γp → π0π0p. The strong contri-

bution of the N(1520)3/2− resonance to the γp→ π0π0p reaction is seen as the first

peak at Eγ ≈ 730 MeV.
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Figure 1.7 Total cross sections for γp→ π0π0p are shown as a function of the

incident-photon energy. The data are from GRAAL [38], CB-ELSA [39, 36],

DAPHNE [40], TAPS [36], and Crystal Ball/TAPS [41, 42]. Figure adapted from

Ref. [42].

However, total cross-section data alone are insufficient in the study of baryon

resonances. Other observables, like polarization observables, are needed to constrain

the models and partial-wave analyses. A series of exciting experiments has been

carried out; in particular at the CLAS facility at JLab, the Crystal Barrel/TAPS

experiment at ELSA, and the Crystal Ball/TAPS experiment at MAMI facility to

measure the differential cross section, single- and double-polarization observables by

using polarized (linear or circular) photon beams and polarized targets for the single-

and double-meson photoproduction reactions.

Nucleon resonance excitations contribute to the total photoproduction cross sec-
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tion. In the second resonance region theN(1440)1/2+, N(1520)3/2−, andN(1535)1/2−

resonances dominate the cross section of the γp→ pπ+π− reaction. When the ground-

state nucleon is excited to the second resonance region, within a very short time, res-

onances decay back into the ground-state nucleon through various decay modes. An

important decay channel is N∗ → ∆π, following the emission of the second π meson

during the decay of ∆. Another important channel is N∗ → pρ. The vector meson

ρ0 has branch ratio of 99% to decay into π+π−. Figure 1.8 illustrates the different

decay modes from N∗.

Figure 1.8 Nucleon excitation spectrum. The arrows are showing the mesonic

decays of these resonances, the associated width is proportional to the respective

branching ratio. Figure taken from Ref. [9].
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In addition to the total cross-section, measurements of the invariant mass spectra

of the γp → pπ+π− reaction were performed at Mainz [43]. These experimental

results provide additional constraints for theoretical models.

Although it is widely agreed that the polarization observables are important, as

they effectively constrain model predictions, experimental measurements were sparse

because of the required polarized beams or targets or the need to measure nucleon

recoil polarizations. The development of the technologies to polarize both beam

and target opened the world to extract these observables. The first measurement of

the beam helicity asymmetry in the γp → pπ+π− reaction was performed by CLAS

collaboration [44]. Figure 1.9 shows the helicity asymmetry for nine different invariant

mass bins.
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Figure 1.9 Helicity asymmetries at W = 1.50 GeV for nine bins of the invariant
mass M(pπ+), as indicated [44]. The solid curves are the results of Mokeev et al.
[45, 46, 47]. The dashed curves show results of calculations by Fix and Arenhövel
[26]. Figure from Ref. [44].
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The asymmetry is an odd function of the azimuthal angle. The solid curves

are the predictions by Mokeev [45, 46, 47] and dashed curves are the calculation

by Fix and Arenhövel [26]. Since the cross section of double-pion photo-production

is five dimensional, the binning in all of them is for statistical reasons impossible.

Thus integrated asymmetries are shown to investigate more aspects of the helicity

asymmetry. In Fig. 1.10 [44], the azimuthal angle was fixed to 105◦ allowing the

study of helicity asymmetries for various invariant masses. The open triangles show

the asymmetries at W = 1.95 GeV and the filled circles are at W = 1.55 GeV.
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Figure 1.10 Helicity asymmetry as a function of the invariant mass M(pπ−) for
W = 1.55 GeV (filled circles) and 1.95 GeV (open triangles) and a 30◦-wide φ-angle
range centered at φ = 105◦. The curves are the results of Mokeev et al. [45, 46, 47]
(solid) and Fix and Arenhövel [26] (dashed) for W = 1.55 GeV only.

Other measurements of the beam-helicity asymmetry were carried out at the

MAMI accelerator in Mainz for three isospin channels, γp → pπ+π−, γp → nπ+π0

and γp → pπ0π0 [48, 49, 50]. The circularly polarized photons were produced by

bremsstrahlung of longitudinally polarized electrons. The photons were incident on

an unpolarized proton target. The charged pions and the decay photons of π0 mesons
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were detected in an electromagnetic calorimeter with 4π coverage. Figure 1.11 shows

an example of the beam helicity asymmetries for photon energies from 575 to 815 MeV

for the ~γp→ pπ+π− channel [48]. Model predictions from Fix and Arenhövel [26] and

Roca [51] are plotted for comparison. Due to the symmetric behavior of the observ-

able I◦, the extracted observables were fit by a sine-series, shown as green curves. The

results of the measurements of the three double-pion channels will help in the future

to investigate the properties of resonances as they challenge and constrain present

models.

Figure 1.11 Beam-helicity asymmetry in the γp→ pπ+π− channel for different
bins of photon energy. Green curves: sine-series fit to the data. Red curves: Fix and
Arenhövel model [26]. Blue: Roca [51], Black: Roca [51] for 4π acceptance. Figure
taken from Ref. [48]
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Chapter 2

Double-Charged-Pion Photoproduction

2.1 Kinematic Variables of Double-Charged-Pion Photoproduction

Before discussing the experimental facilities and data analysis, it is necessary to intro-

duce the kinematic variables used in this thesis to describe the γp→ pπ+π− reaction.

There are two incoming particles and three final-state particles participating the re-

action. The momentum vectors of these particles are used to define two reaction

planes, called the scattering plane and the double-pion plane. The scattering plane

is defined in the center-of-mass (CM) frame by the incoming photon beam and re-

coiling proton, while the double-pion plane is defined by the two π mesons. With

the momenta of the incident photon, ~k, and final-state paricles, ~pp, ~pπ+ , and ~pπ− , the

axes of the coordinate system in the scattering plane are

ẑ = k̂, ŷ = k̂ × (~pπ+ + ~pπ−)
|k̂ × (~pπ+ + ~pπ−)|

, ẑ = x̂× ŷ, (2.1)

and in the double-pion plane1

ẑ′ = ~pπ+ + ~pπ−

|~pπ+ + ~pπ− |
, ŷ = ŷ′, ẑ′ = x̂′ × ŷ′, (2.2)

The two different reaction planes are shown in Fig. 2.1.

The angle ΦCM is defined as the angle between scattering plane and double π

plane. It is of special interest since it will be used as the main kinematic binning

variable. Polar angle θ is the angle between π+ vector and the opposite vector of

recoiling proton, while angle θCM is that between incoming photon beam and recoiling

1The ẑ′ axis in this work is equal to −ẑ′ in Ref. [52].
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Double  plane

Scattering Plane

CM

Figure 2.1 Reaction planes in center of mass frame. Photon beam and recoiling
proton determine the scattering reaction plane and two π mesons determine the
second reaction plane. The three kinematic angles and coordinate system are shown.

proton. The angle β in Eq. (2.5) is defined as the angle between the scattering plane

and beam polarization direction.

2.2 Formalism of Polarization Observables Pz, P s
z and P c

z

The derivation of the polarization observables has been completed by W. Roberts

[52] for the processes γN → Nππ and πN → Nππ. Roberts has developed a set

of polarization observables that are accessible to final-states containing two pseudo-

scalar mesons and a spin-1/2 baryon, such as Nππ. He has already examined the

observables that may arise using photon beams. The derivation is written for these

observables in terms of both helicity and transversity amplitudes. The relationships

among them are derived and expressed as the listed inequalities. He also indicates

the measurements needed for each of the observables. A number of the observables

can be measured in the near future based on the existing facilities, particular for
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the double-pion process. Indeed, the photon polarization asymmetry I�, has already

been measured at Jefferson Laboratory for double-charged-pion process [53]. The

new technology brought up the polarized targets which elicited the measurement

of observables Px, Py and Pz. Coupling with circularly polarized beams allows the

measurement of P�x , P�y and P�z , while the linearly polarized photons help open

the door to access P s,c
x , P s,c

y and P s,c
z . The experiments and analysis relating to the

observables mentioned above will draw attention in the future.

The differential cross section is proportional to the amplitudeM for the transition,

dσ ∝ |M|2. The matrix elementsM can be written as

iM = χ†(Aj + σiBij)φεj, (2.3)

where the χ and φ are respectively the Pauli spinors representing the final and initial

nucleons and ~ε is the polarization vector of the initial photon. The vector A and

the pseudotensor B are the quantities that contain all the details of the model used

to describe the particular reaction which is being studied. Eight helicity amplitudes

determine the reaction, Mλ
1 , Mλ

2 , Mλ
3 , Mλ

4 , where λ = ± is the helicity of the

photon.

The polarized reaction rate for the double-pion photoproduction reaction, I, can

be expressed in terms of polarization observables [52],

ρfI =I0

{
(1 + ~Λ · ~P + ~σ ~P

′ + Λα
i σ

β
′

Oαβ′ )

+ δ�(I� + ~Λ · ~P� + ~σ ~P�
′ + Λα

i σ
β
′

O�
αβ′

)

+ δl[sin 2β(Is + ~Λ · ~P s + ~σ ~P s′ + Λα
i σ

β
′

Os
αβ′ )

+ cos 2β(Ic + ~Λ · ~P c + ~σ ~P c′ + Λα
i σ

β
′

Oc
αβ′ )]

}
(2.4)

while ρf = 1
2(1 + ~σ · ~P ′) is the density matrix of the recoiling nucleon. The polar-

ization observables are ~P , that arise if the target nucleon is polarized, the nucleon

recoil polarizations ~P ′, and the target/recoil polarizations Oαβ′ . Observables with a

21



www.manaraa.com

superscript s or c enter the reaction rate in the sin 2β and cos 2β terms, respectively.

The photon beam can be polarized circularly or linearly with degrees of polarization

of δ� or δl, respectively. The degree of polarization of the initial-state nucleon target

is ~Λi.

In this thesis, the beam is only polarized linearly, δ� = 0, and the target is

polarized longitudinally, Λi,x = Λi,y = 0. The polarized reaction rate then simplifies

to:

ρfI = I0 {1 + ΛzPz + δl [sin 2β(Is + ΛzP
s
z ) + cos 2β(Ic + ΛzP

c
z )]} , (2.5)

where Λz stands for the target polarization along the direction of the incoming photon

beam. In total five polarization observables are determining the reaction rate in

Eq. (2.5); the observables Pz, P s
z and P c

z , which are the observables to be determined

in this thesis, and the observables Is and Ic, which were studied by Hanretty in the

CLAS experiment g8 at JLab [54] and Sokhoyan in a CBELSA/TAPS experiment at

ELSA [55].

Each polarization observable can be expressed in terms of a specific combination

of helicity amplitudes. Due to various combinations, there are many different observ-

ables. Table 2.1 gives the unpolarized reaction rate, I0 and the three polarization

observables to be extracted in this thesis, Pz, P s
z and P c

z , in terms of the helicity

amplitudes.

Table 2.1 Singe- and double-polarization observables Pz, P s
z and P c

z and their
expressions in terms of helicity amplitudes.

Observable Helicity Form

I0 |M−
1 |2 + |M+

1 |2 + |M−
2 |2 + |M+

2 |2 + |M−
3 |2 + |M+

3 |2 + |M−
4 |2 + |M+

4 |2

I0Pz −|M−
1 |2−|M+

1 |2−|M−
2 |2−|M+

2 |2 + |M−
3 |2 + |M+

3 |2 + |M−
4 |2 + |M+

4 |2

I0P
s
z 2=(M+

1 M
−∗
1 +M+

2 M
−∗
2 −M+

3 M
−∗
3 +M+

4 M
−∗
4 )

I0P
c
z 2<(M+

1 M
−∗
1 +M+

2 M
−∗
2 −M+

3 M
−∗
3 −M+

4 M
−∗
4 )

These combinations of helicity amplitudes show that polarization observables can

22



www.manaraa.com

be sensitive to the interference of helicity amplitudes and to their relative phases, the

unpolarized cross section is not.

2.3 Model from A.Fix

Results from this work will be compared to model calculations by A. Fix ad H. Aren-

hövel [26]. In that paper, A. Fix has extended the elementary two-pion photoproduc-

tion operators to higher energies, and includes all four-star resonances with center-

of-mass energy less than 1.8 GeV. This operator is based on the effective Lagrangian

approach evaluating only the tree leveled diagrams, which is shown in Fig. 2.2 [26].

The necessary coupling strengths are determined by the hadronic and the electromag-

netic decays of the resonances. The present approach is not allowing a high-precision

description of the processes, mainly because of the non-relativistic treatment of the

baryons. However, it should be able to account for the main feature of the reaction

so that the qualitative conclusions about the underlying mechanisms can be derived.

In the double-charged-pion channels, it a decent description of the cross-section data

can be obtained, but only if the large contribution of the ∆(1700)3/2− is excluded.
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Figure 2.2 Diagrams for the reaction γN → ππN used in the model by Fix and
Arenhövel. The figure is taken from Ref. [26]
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Chapter 3

Experimental facility

The work presented in this thesis utilized data from run g9a of Jefferson Lab ex-

periment E06-013, “Measurement of π+π− Photoproduction in Double-Polarization

Experiments using CLAS” [56]. The data were taken with the CEBAF Large Accep-

tance Spectrometer (CLAS), which is housed in Hall B. A linearly-polarized photon

beam was produced by coherent bremsstrahlung of the primary electrons on a crystal

radiator. The photons were then incident on a stationary polarized proton target.

The outgoing charged particles were detected by the CLAS. The reaction was then

reconstructed using four-momentum vector conservation.

3.1 Overview of experiment g9a

The g9 experiment consists of two parts, g9a (target was longitudinally polarized) and

g9b (target was transversely polarized). In both, g9a and g9b, data were collected

with circularly- and linearly-polarized photon beams. The analysis presented here

makes use of data taken with linearly-polarized photons in g9a, which took place

from December 7, 2007 to February 2, 2008. Based on the nominal electron-beam

energy, g9a can be divided into three different periods. Table 3.1 shows the time and

the run ranges for each period.

In order to reduce the systematic uncertainties of the extracted polarization ob-

servables, data were taken with both, positive and negative target helicity and two

different orientations of the photon-beam polarization. The photon polarization was

either parallel or perpendicular to the Hall-B floor. The extraction of polarization
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Table 3.1 Nominal electron-beam energies and corresponding data-taking periods
and run ranges for the sample of g9a data used in this work.

Electron Beam

Energy (GeV) Dates (M/D/Y) Run Range

3.539 12/07/07 - 12/20/07 55678 - 55844

2.751 01/05/08 - 01/11/08 55854 - 55938

4.599 01/17/08 - 02/03/08 55945 - 56152

observables makes use of an asymmetry between yields obtained with all possible com-

binations of beam polarization direction and target helicity. To give an idea about

the amount of data collected for a given beam-target polarization combination, in

Table 3.2 we show the total triggers collected for different energies of the coherent

peak. In the table, and further in the text, we denote the beam and the target polar-

izations with δ and Λ, respectively. The superscripts ‖ and ⊥ denote the polarization

orientations of the photon beam relative to the Hall-B floor. The superscripts + and

− denote the polarization orientation of the target. One can see that data were col-

lected for nine coherent peak positions, ranging from 0.73 GeV to 2.3 GeV, in steps

of 0.2 GeV. During the g9a running period, data were also taken with amorphous

radiator. Since the photon beam for these data was circularly polarized, they are not

considered in this analysis.

In g9a, a single-sector level-2 trigger was used. The sector trigger was a coincidence

between the time-of-flight and the start counters. The PMT signals of all TOF

paddles in each sector were grouped in a logical OR. Similarly, the PMT signals of

all ST paddle in each sector were grouped in a logical OR. For each sector, the TOF

and the ST OR signals were grouped in a logical AND. When there was an AND

signal in at least one sector, the signal was sent to the trigger supervisor and used

to generate the gate signals for the ADCs and the start/stop signals for the TDCs.

Since the distance from the target to the TOF counter is several meters, the range
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Table 3.2 Total number of triggers (in millions) collected in g9a for various photon
energies and different combinations of beam and target polarization directions.

Nominal Coherent Edge (GeV) δ‖Λ+ δ⊥Λ+ δ‖Λ− δ⊥Λ−

0.73 11.0 10.6 3.8 3.7

0.93 10.3 10.2 12.3 12.7

1.10 9.3 27.5 5.2 6.6

1.30 14.7 14.4 17.8 17.0

1.50 14.6 18.5 17.7 19.1

1.70 8.8 5.3 37.6 38.1

1.90 8.6 8.4 15.9 12.5

2.10 24.0 22.4 17.7 15.0

2.30 28.2 21.1 82.7 12.3

of particles times of flight to that detector is larger than to the start counter. Thus,

the TOF sector OR signal was 120-ns long, while the ST sector OR signal was 25-ns

long. The latter was delayed relative to the former, so that effectively it was the start

counter detector that set the time of the trigger signal. All the times measured by

the TDCs were relative to the trigger time. Level-2 trigger means that in addition to

the TOF-ST sector coincidence, the hits in the drift chambers had to match patterns

of likely tracks. The Level-2 trigger rejects events, such as due to cosmic rays, that

do not originate in the target.

3.2 Continuous Electron Beam Accelerator Facility (CEBAF)

The Continuous Electron Beam Accelerator Facility (CEBAF) [57] in Newport News,

VA, was built to provide high-duty electron beams for nuclear-physics experiments.

It began operations in 1996.

The electrons are produced in the injector via photoelectric effect by shining laser

light on a GaAs photocathode. The latter can provide polarizations of up to 80%. The
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electron beam is accelerated to 67 MeV by a set of cryomodules. This pre-accelerated

beam is injected into the main machine, which consists of two superconducting linear

accelerators (linacs) and eight arcs that transport the beam between the two linacs.

Each linac consists of 20 cryomodules, each of which is composed of 8 Niobium su-

perconducting cavities. After leaving the injector, the electrons enter the north linac

and then the first arc, where by the use of magnets they are transported to the south

linac. Another arc bends the beam back to the north linac, and so on. Thus, the

electrons can re-circulate through the accelerator up to 5 times (passes). At the time

the experiment discussed here was conducted, each linac could accelerate the elec-

trons to energies of up to 580 MeV, which means up to 1.16 GeV per pass and up

to 6 GeV overall. From CEBAF the electron beam is extracted to three end stations

(experimental halls), Halls A, B, and C. As the laser system in the injector actually

consists of three 499-MHz (one third of the 1497-MHz frequency at which the linacs

operate) diode lasers (each of which provides beam to one end station), the beam

bunches arrive in Hall B every 2.004 ns. This system allows for a simultaneous beam

delivery to the three halls, which is a unique feature of CEBAF. Figure 3.1 shows

schematic overview of the accelerator and the three experimental halls. Full details

of the accelerator can be found in Ref. [57].

At the time of writing this document, a 12-GeV upgrade of the accelerator has

been in progress. The detectors in the existing halls are also being upgraded and a

new Hall D has been built.
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Figure 3.1 Schematic diagram of the CEBAF accelerator and the three
experimental halls. One can see the two linacs and the bending arcs that transport
the beam between the linacs. The figure is from Ref. [57].
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3.3 Coherent bremsstrahlung tagging facility

Linearly-polarized photon beam

The linearly polarized photon beam for this experiment was produced by using the

coherent bremsstrahlung technique [58]. The electrons extracted from the CEBAF

accelerator were incident on a 50-µm thick diamond radiator. The latter is mounted

on a goniometer, which allows the crystal to be moved vertically and horizontally, as

well as to be rotated about three independent axes. The goniometer, thus, makes it

possible to control the orientation of the crystal with respect to the electron beam, and

therefore, to adjust the energy of the coherent bremsstrahlung. In order to enhance

the intensity of the coherent radiation component over the incoherent component (and

therefore the size of linear polarization in the coherent peak), the photon beam passes

through a 2-mm-diameter collimator located approximately 23 m downstream from

the diamond radiator. Tight collimation also provides for better separation of the

main coherent peak from adjacent coherent peaks. With this technique, polarizations

of up to approximately 80% have been achieved in CLAS experiments.

Since coherent radiation is produced when the momentum transfer from an elec-

tron to the crystal is equal to a reciprocal lattice vector, the spectrum of linearly-

polarized photons is discrete. Typically, for a given orientation of the diamond

with respect to the electron beam, a specific reciprocal-lattice vector is selected such

that coherent bremsstrahlung is enhanced for the corresponding momentum transfer,

which results in a peak (coherent peak) in the photon energy spectrum. Since one

cannot orient the crystal in a way that selects only one reciprocal lattice vector, other

coherent peaks are also observed in the spectrum, but with much smaller intensity

and polarizations. This is shown in Figure 3.2 where one can see a typical linearly-

polarized photon spectrum from a diamond radiator [59]. In Hall B the main coherent

peak is obtained by selecting the [022̄] crystal plane [60]. Incoherent bremsstrahlung
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is also emitted, and the experimental photon energy spectrum contains incoherent

component as well (even though tight collimation reduces its amount). In the exper-

iment, the energy (position) of the main coherent peak is set to a desired nominal

value by adjusting the polar angle of the crystal in lab system, while the orientation

of the photon polarization is set by changing the azimuthal angle [59]. Once the

orientation of the crystal was fixed, data were taken. During a data run (spanning

usually over two hours) the set experimental conditions were not changed. The mag-

nitude of the linear polarization is obtained by fitting theoretically calculated curves

to the experimental energy spectrum of the collimated photon beam [61, 62].

Figure 3.2 Typical energy distribution of coherent bremsstrahlung. The spectrum
is normalized to a reference distribution obtained from amorphous radiatior. One
can see the largest beam intensity when selecting the [022̄] plane. The intensity of
the linearly polarized photon beam decreases gradually with the higher and higher
order planes.
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Tagging spectrometer

The tagging spectrometer (tagger) in Hall B [63] consists of a dipole magnet and

two planes of scintillators (hodoscope) operating in the focal plane of the mag-

net. Figure 3.3 shows the components of the tagger. Electrons that do not emit

Figure 3.3 Schematic diagram of the Hall-B bremsstrahlung tagging system. The
trajectories in the dipole field of beam-electrons with nominal energy, E0, as well as
of electrons that have radiated bremsstrahlung in the radiator can be seen. Two
planes of focal-plane detectors, E-counters (solid gray line) and T-counter (solid
dashes) allow for determining the energy and the time of the electron hit,
respectively. The trajectory of the photon beam is shown by the dotted line. The
figure is from Ref. [63].

bremsstrahlung in the radiator, are bent by the magnetic field along the optical axis

of the magnet and directed to the beam dump. Electrons that have radiated pho-

tons, and have lost energy, are directed to the focal-plane hodoscope. The position

of an electron hit (and therefore its energy) is measured by 384 partially overlapping

scintillator paddles (E-counters) and is used to reconstruct the energy of the elec-

tron. This geometry yields effectively 767 energy bins and improves the resolution of

the energy measurement. Behind the plane of the E-counters is located the T-plane
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consisting of 61 partially overlapping scintillators, which yields effectively 121 timing

bins. The T-counters are used to determine the time of an electron hit. The energy

and the time of an electron hit are used to determine the energy and the time of the

corresponding bremsstrahlung photon at the target.

The spectrometer allows tagging photons with energies between 20% and 95% of

the energy, E0, of the electron beam. The energy resolution is 0.001×E0 and the

timing resolution is 110 ps. The latter is sufficiently low to resolve the 2.004-ns time

structure of the electron beam, which is used to reduce accidental background.

Determination of the beam polarization

In order to extract polarization observables from data, the degree of linear photon

polarization must be known. Observables are typically extracted over a photon-energy

bin of a finite width. Since in g9a data were taken at discrete nominal coherent-

edge positions that were 0.2 GeV apart, one energy bin in our analysis includes only

data taken at one nominal coherent-edge position. For example the data in the bin

Eγ = 0.8 ± 0.05 GeV were all taken when the coherent edge was set to 0.93 GeV.

Although all the events in one data run share only one nominal coherent edge, due

to oscillations in the crystal, the actual position of the coherent edge fluctuates with

respect to the nominally set position. Since the photon polarization is not directly

measured, but obtained by fitting the experimentally-measured photon spectra to

theoretical curves that do not describe well the variations of the coherent edge with

time, the determination of the average photon polarization for a sample of events in

one of our energy bins has multiple stages. Here we give a brief description of the

procedure followed in this analysis.

We make use of the standard g9a polarization tables [64], which contain the pho-

ton polarization and its uncertainty as a function of photon energy and E-counter

number. A polarization table was obtained for each setting of electron beam energy,
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nominal coherent-edge position, actual coherent-edge position, and polarization-plane

orientation (such as ⊥ or ‖). During the experiment, the scalers connected to the

tagger E-counters provide the number of photons per E-counter. These spectra are

accumulated over two-second intervals and are written to the data stream in special

events. In order to determine the actual energy of the coherent edge during such

a 2-s interval, the corresponding photon spectrum is divided by a measured refer-

ence incoherent-bremsstrahlung spectrum (taken when the electron beam is incident

on amorphous radiator). The actual coherent-edge position is obtained using the

spectrum of the ratio (called enhancement spectrum). The enhancement spectrum is

not affected by channel-to-channel detector inefficiencies. The actual position of the

coherent edge is written to the data stream every two seconds. For each electron-

beam energy, photon polarization orientation, and nominal coherent-edge energy,

the method used to produce the polarization tables [61] reads and histograms these

coherent-edge positions. The histogram provides information about the variation of

the coherent edge during the experiment. The range covered by the positions is binned

in 2-MeV wide bins, and for each bin the corresponding enhancement photon-energy

spectrum is constructed. The polarization values in the tables were then obtained

by fitting theoretical curves to the enhancement spectra. The theoretical curves are

from a calculation of the coherent bremsstrahlung, which takes into account experi-

mental specifics, such as electron energy, radiator, collimation, etc. Quantities that

are difficult to estimate a priori, such as smearing due to beam divergence, multiple

scattering, and beam spot size, or the amplitude of the main coherent peak, are free

parameters in the fit. The procedure is iterative and is fully described in [61, 62].

An example of the photon polarization as a function of photon energy for nominal

coherent-edge position of 1.5 GeV in g9a is shown in fig. 3.4. With this procedure the

photon polarization is determined with small uncertainty for photon energies within

200 MeV from the coherent-edge position. Beyond this range, the uncertainties are
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Figure 3.4 Magnitude of photon polarization as a function of photon beam energy
as determined in the polarization table for nominal coherent-edge position of
1.5 GeV.

large, which makes those data unusable for extraction of observables that depend on

photon-beam polarization.

In order to make use of the polarization tables, in our analysis for every physics

event in CLAS, we first determine the actual position of the coherent edge, ECohEdge,

and the energy of the photon, Eγ, that initiated the reaction in the target. We accept

only these events for further analysis, for which the energy of the photon was within

200 MeV below the coherent edge, i.e.,

ECohEdge − 200 MeV < Eγ < ECohEdge (3.1)

As mentioned above, in the experiment the position of the coherent edge is read

every 2 seconds, and written in a special event in the data stream. In the analysis,

we correlate all the physics events collected during that 2-s period with the special

event recorded at the end of the period and assign that coherent edge to these physics

events. The physics events collected during the next 2 seconds are assigned an actual

coherent edge recorded at the end of that 2-s period and so on. Then, for every
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physics event, we read the polarization from the corresponding polarization table.

In the table, the value of photon polarization is given for discrete values of photon

energies that are 9 MeV apart. For a given physics event in which the photon had

energy of Eγ, we find in the table the entry with the closest larger photon energy

and assign the corresponding photon polarization to that physics event. The photon

polarization for a given kinematic bin is obtained as the average polarization of all

physics events in that bin, which have passed all our selection criteria. If there is

background contribution in this sample of physics events, we assume that the average

polarizations of the signal and background are the same.

At the time of writing of this dissertation, there was no precise estimate of the

overall systematic uncertainty of the method for estimating the photon-beam po-

larization. Since the self-consistency of the polarization can be controlled within

15% [65], in this work we use the value of 15% as an estimate of the systematic

uncertainty of the photon-beam polarization.

3.4 FROzen Spin Target (FROST)

The experiment discussed here made use of the Hall-B FROzen Spin Target (FROST)

[66] that was specifically designed and constructed at Jefferson Lab for the N*

program. The polarized-target sample consists of 1.5-mm-diameter frozen butanol

(C4H9OH) beads loaded into a 5-cm long, 1.5-cm diameter cylinder (target cap),

which is made of Polychlorotrifluoroethylene (PCTFE) material. The cap is attached

to a 25-cm long stainless-steel tube by a 0.13-mm thick aluminum vacuum window.

The center of the target cap coincides with the center of the CLAS. Figure 3.5 shows

a schematic diagram of the target.

The free protons in the butanol are polarized outside of the CLAS via Dynamic

Nuclear Polarization in a magnetic field of 5 T and temperature of 200 – 300 mK. The

target is then cooled down to frozen-spin temperature of about 30 mK and a weak
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Figure 3.5 Schematic diagram of the FROST cryostat.

magnetic field created by a holding coil is turned on to maintain the polarization.

The target is then inserted in the CLAS. A solenoid holding field of 0.56 T was used

to maintain longitudinal polarization (this experiment), while a dipole field of 0.5 T

was used for transversely polarized protons. The thickness of the holding coil is small,

approximately 1 mm, to minimize the energy loss of outgoing particles. The degree of

proton polarization was measured by means of the nuclear magnetic resonance (NMR)

method [49, 136]. The average starting longitudinal polarization in the positive state

was 84% and in the negative spin state was −86%. The relaxation time of the proton

polarization was of the order of several thousand hours: with beam on the target,

the polarization loss was about 1% per day. The use of FROST did not decrease

significantly the angular acceptance of CLAS, particles scattered up to 135◦ in polar

angle were detected.

Since scattering off unpolarized nucleons bound in the carbon and the oxygen

nuclei in the butanol sample contributes a large amount of background, two additional

targets for background studies were mounted in the target cryostat, outside of the

holding coil: a 1.5-mm thick carbon foil and a 3.5-mm CH2 foil, placed about 6 cm

and 16 cm, respectively, downstream from the butanol. Full details of the FROST

can be found in [67, 66].
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In order to extract polarization observables from data, we need to know not only

the polarization of the photon beam, but also of the target. The degree of pro-

ton polarization was measured by means of the nuclear magnetic resonance (NMR)

method [67, 66]. In the g9a experiment, the free protons in the butanol target were

polarized parallel (positive helicity) or anti-parallel (negative helicity) to the photon-

beam direction. Figure 3.6 shows the helicity and the polarization degree of the

target as a function of run number. The minimum target polarization degree was ap-

Figure 4.4: Target Polarization for g9a experiment. The experiment starts at run
55678 and ends at 56151. In addition to the runs with linearly polarized beam, there
are amorphous (circularly polarized beam) runs in the run range.

67

Figure 3.6 Target polarization as a function of run number for the g9a experiment.
The experiment begins with run 55678 and ends with run 56151. The run range
shown contains runs taken with linearly- and circularly-polarized photons. The runs
analysed in this work are specified in Table 3.1.

proximately 72% and the maximum was around 90%. In the experiment, the target

polarization is known as a function of run number. Systematic uncertainties in the

target polarization have been estimated to be ≈ 6% [68].

As the figure shows, the helicity of the target was flipped several times during

the experiment, so that for each nominal coherent edge position data were taken

with both positive and negative helicity. The change of target helicity, as well as the

rotation of the polarization of the photon beam, were done in order to reduce the

systematic uncertainty of the extracted polarization observables.
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3.5 The CLAS detector

The CEBAF Large Acceptance Spectrometer (CLAS) [69] is installed in the experi-

mental Hall B and is the main detector for large-acceptance experiments at Jefferson

Lab. The CLAS is composed of multi-layer detector systems, each of which plays a

unique role in particle tracking and identification.

The detector is radially symmetric around the beam line and encloses the exper-

imental target. CLAS can operate with various types of polarized or unpolarized

cryogenic, solid, or gas targets of various lengths. In the experiment discussed here,

the beam was incident on a longitudinally polarized butanol target that was posi-

tioned at the center of the CLAS. The main component of the CLAS is the toroidal

magnet (torus), which is used for momentum spectrometry. In real-photoproduction

experiments, such as the one discussed here, the first detector surrounding the target

is the start counter (ST) [70], which is used to determine the vertex time of a particle.

ST is followed by three layers of drift chambers (DC) [71], which are used for track-

ing, electromagnetic calorimeters (EC) [72, 73] for detection of neutrals, time-of-flight

counter (TOF) [74], and Cherenkov counter (CC) [75] for detection of the scattered

electron in electroproduction experiments. Figures 3.7 and 3.8 show a side- and a

down-stream view, respectively, of the CLAS.

The angular coverage of the CLAS is from 8◦ to 142◦ in polar angle and from 0◦

to 360◦ (excluding the angles occupied by the superconducting coils) in azimuthal

angle. This angular acceptance is much larger compared to the acceptances of the

spectrometers in Halls A and C, however the CLAS precision is lower as a compromise.

Detailed description of each of the CLAS subsystems used in the g9a experiment is

given in the following sections.
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Figure 3.7 Sideview of the CLAS detector. At the center of the CLAS is the 5-cm
long FROST target. One can see the three regions of drift chambers, the Cherenkov
counter, the time-of-flight counter, and the electromagnetic calorimeter. The start
counter, which surrounds the target before region 1 DC, is not shown. The
short-dash line around Region 2 DC indicates the area of the magnetic field. The
two dashed lines represent outbending particle trajectories. The figure is from
Ref. [71].

Superconducting torus magnet

The torus magnet [76] consists of six superconducting coils, which separate the de-

tector into six independent magnetic spectrometers (sectors) that are symmetrically

positioned around the beam line. The space between each two coils is filled with

tracking and timing detectors. The maximum current the coils can operate at is

3860 A, which provides a maximum field integral of 2.5 T·m at the most forward

polar angle and a field integral of 0.6 T·m at 90◦. In the experiment discussed here,

the torus operated at a lower current, that provided maximum field of 1918 T. With a

magnetic field that is stronger at small polar angles than at larger angles, the charged

particles scattered in the forward direction are bent such that they can pass through

all detectors in the CLAS. Figure 3.9 shows a map of the absolute magnetic-field-
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Figure 3.8 Downstream view of the CLAS detector. The six-sector structure of the
CLAS can be seen. Each sector covers azimuthal-angle range of 60◦. The mini-torus
was not used in the g9a experiment. The figure is from Ref. [69].

strength between any two coils. With this field geometry, the charged particles are

only bent radially, while their azimuthal angle is unchanged. Also, the geometry of

the coils is such that the space at the center of the CLAS is field free, which allowed

for the operation of a polarized target in this experiment.

Start counter

The start counter [70] is the first detector through which outgoing particles pass after

they leave the target. The detector consists of 24 paddles (4 in each sector) of plastic

scintillator surrounding the target. Each paddle has a straight section of 50.2 cm and

a shorter, tapered end (”nose“) that is bent at 45◦ (see Fig. 3.10). With this geometry,

the overall length of the start counter is 62 cm and its polar angular coverage matches

well the polar-angle range covered by the CLAS. The light produced by a particle

in a ST scintillator paddle is transported by a light guide to a photomultiplier tube,

which then converts it to an electric signal. The amplitude and the time of the

signal are digitized by an Analog-to-Digital Converter (ADC), and Time-to-Digital
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Figure 3.9 Absolute magnetic-field strength between a pair of coils. One can see
that a large volume around the center of the CLAS is field-free. The polarized
target for this experiment was positioned in this volume and the toroidal magnetic
field did not have an effect on its operation. The figure is from Ref. [77].

Converter (TDC), respectively, for further analysis. The signal is also used in the

CLAS trigger. During data processing, the TDCs are calibrated and their values are

converted to times. In data analyses, the ST time is used to determine the time of

the interaction at the vertex (CLAS vertex time). A comparison of the CLAS vertex

time with the photon vertex time (which is independently measured by the tagger),

allows to synchronize the particles detected in the CLAS with the tagged photon

that initiated the reaction. This allows to significantly reduce accidental background

events. In order to be able to resolve the 2.004-ns time structure of the electron-beam

bunches, the timing resolution of the detector must be smaller than 2.004 ns and is

typically between 290 ps and 330 ps depending on the hit position of the particle

along a paddle. Although, ADC values were recorded in the data stream, they were

not converted to energy during the data processing, and the energy loss deposited in

ST was not used in this analysis.
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Figure 3.10 A side view of the start counter. In the forward direction each
scintillating paddle is tapered and bent into a ”nose“. On the back one can see the
light guides and the photomultipliers. The target shown is the standard 40-cm long
unpolarized target. In this experiment the target was 5-cm long, which somewhat
increases the forward and the backward polar angular coverage than as shown. The
figure is from [70].

Drift chambers

The CLAS Drift Chamber system [71] consists of three regions of multi-layered drift

chambers surrounding the target. Region 1 DC is located between the start counter

and the most-inner part of the torus coils. Thus, charged-particle tracks in this

region are straight lines. Region 2 DC is located radially outward from Region 1,

and occupies the space of largest magnetic field, while Region 3 DC is outside of the

magnetic coils where the magnetic field is fairly weak. Each DC region contains up

to 12 layers of hexagonal drift cells (see example for Region 3 in Fig. 3.11). The field

wires, made of 140-µm-diameter gold-plated aluminum are located at the vertices of

each hexagon, while the sense wires, made of 20-µm-diameter gold-plated tungsten,

are at the center of the hexagons. The cell radius increases as the radial distance from

the target increases, and varies from 15 mm – 17 mm in Region 1 to 40 mm – 45 mm

in Region 3. The chambers are filled with a gas mixture of 90% Ar and 10% CO2.
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When a charged particle passes through a cell it ionizes the gas and the ionization

electrons are collected at the sense wire. The electric pulse resulting from a hit is

shaped and amplified, and then directed to TDC. During data processing the TDC

values are converted to times, the electron drift times are determined and converted

to drift distances. The latter allows for precise determination of the position of a hit

in each layer. The track of the particle is reconstructed by a fit to the hits in all

layers.

By extrapolating a particle track from Region 1 to the target, the position of the

vertex as well as the polar and the azimuthal angles of the particle at the vertex

are determined. The magnitude of the three-momentum vector is obtained from

the track curvature and the magnetic field. The CLAS resolution in polar angle is

approximately 1 mrad and in azimuthal angle is about 4 mrad. The momentum

resolution depends on polar angle and varies between 0.5% and 2%.

Figure 3.11 A zoomed-in schematic view of Region 3 DC. The hexagonally shape
drift cells and their arrangement in 12 layers can be seen. The shaded hexagons
indicate the path of a charged particle, which causes signals on the sense wires. The
figure is from Ref. [71].
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Time-of-flight Counter

The TOF subsystem [74] is placed outside of the magnetic field and for large polar

angles is the most outward detector in the CLAS. At forward angles it is located

between the electromagnetic calorimeter and the Cherenkov counter. The TOF is

segmented in polar angle and in each sector it consists of 57 scintillator paddles.

All the paddles are 5.08 cm thick, while their length and width varies with polar

angle. The paddles are arranged such that each one is normal to the average particle

trajectory (see Fig. 3.12). The polar-angle coverage of the TOF is from 8◦ to 142◦.

The readout of the paddles is similar to the readout of the ST scintillators. The

signal due to the passage of a particle is directed to an ADC and a TDC, which

are both calibrated during data processing. The timing signal is also used in the

event trigger during data taking. The main purpose of the detector is to determine

the time of flight of charged particles, which, when combined with the momentum

information obtained from the tracking and the magnetic field, provides the main

charged-particle identification (PID) in CLAS analyses. The timing resolution of the

paddles varies with length and is between 100 ps and 160 ps. The system allows

distinguishing pions from kaons for momenta up to 2 GeV/c. The combination of

charged-particle energy loss in the TOF and the particle momentum could be used

for a secondary particle identification, although this method is not very precise due

to the large energy straggling.
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Figure 3.12 A 3-dimensional view of the TOF counter in one sector. The
arrangement of the scintillation paddles in four different panels, as well as the
photomultiplier tubes of each paddle, can be seen. The figure is from Ref. [74].
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Chapter 4

Data Analysis: Particle and reaction channel

identification

Two or three of the final-state particles in the γp→ pπ+π− reaction were detected in

CLAS. The charge and momentum of each particle were reconstructed from tracking

information. Time of flight, momentum, and path-length data were used for particle

identification. The initial-state photon for the event was selected by a coincidence

requirement between the photon tagger and CLAS. The missing-mass technique was

used to identify the reaction of interest. A discussion of the methods used to select

the reaction of interest is given in the subsequent sections.

4.1 Raw-Data Analysis and Event Preselection

The data from CLAS experiments are stored on tape for analysis in a BOS format.

BOS is a dynamic memory-management system for input and output of sets of data.

Initial processing of the data, referred to as cooking, converts the raw data (digitized

signal and time information of the detector’s ADCs, TDCs, and channel IDs) using

calibration parameters into meaningful quantities, such as particle tracks, energy,

and time. The cooked BOS files, which include all the information needed for data

analysis, contain events with detected particles from many reaction channels. To

reduce the size of the files for easier data management, an initial filtering (skimming)

to include only event candidates of the double-charged pion reaction channel was

undertaken. This filtering reduces the size of each BOS file from 2 GB to about

47



www.manaraa.com

14 MB. The BOS files use a specific data structure, so called banks, to classify the

CLAS data. Hundreds of banks were defined for various purposes, whereas only data

stored in a few banks are needed for analysis, like the EVNT bank, which records

physical information of final-state particles, and the TAGR bank, which records the

energy and timing information of incoming photons. The skimming not only removed

a large number of events, but also significantly reduced the amount of saved banks

to only those needed for this analysis.

The reaction of interest γp→ pπ+π− has three final-state particles. Due to limited

detector acceptance and efficiency, it is typical that not all three final-state particles

are detected in CLAS. With the use of the missing-mass technique the reaction can be

reconstructed with the identification of only two of the three final-state particles. This

induces three possibilities to select event candidates for the reaction channel based

on charge alone. Specifically, if all the three final-state particles were detected, the

event should include two particle tracks of positive charge and one track of negative

charge. If one of the positive particles was missed (either the proton or the π+),

only one positive track and one negative track would be recorded in the BOS file.

The third possibility is that the negative particle, π−, would be missing and only

the two positive tracks would be recorded. For this reason, only events satisfying

one of the above three possibilities were stored for subsequent analysis. Table 4.1

shows the information recorded for events that satisfy the initial skimming, including

information from the EVNT, the SCPB (bank that holds information from the time-

of-flight detector) and STPB (bank that holds information from the start counter)

banks.

The reconstruction of the reaction channel using the missing-mass technique re-

quires information of the incident photon that initiated the reaction. The incident

photon energies and times at the center of CLAS are saved in the TAGR bank for

all reconstructed photons. The tagger reconstruction software assigns a photon for
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Table 4.1 The bank information kept for the skimmed files. The third column
gives the number of tracks recorded for each event.

Quantity Bank Number Comment

Run HEAD 1 Run number

Event HEAD 1 Event number, starts with 1 at run begin

Time HEAD 1 Event Time, UNIX time

PhoE TAGR All Photon Energy for each photon recorded

TPho TAGR All Time of the photon after RF correction

Mom EVNT 2 or 3 Particle momentum for each track

Beta EVNT 2 or 3 Particle velocity for each track

Cx EVNT 2 or 3 X direction (cosine) at track origin

Cy EVNT 2 or 3 Y direction (cosine) at track origin

Cz EVNT 2 or 3 Z direction (cosine) at track origin

ScPdHt SCPB 2 or 3 Time-of-flight paddle number

StHid STPB 2 or 3 Starter Counter paddle

Vert X MVRT 1 x coordinate of the reaction vertex

Vert Y MVRT 1 y coordinate of the reaction vertex

Vert Z MVRT 1 z coordinate of the reaction vertex

Coh Edge EPIC 1 Coherent edge

Coh Plan EPIC 1 Coherent plane

Coh Radi EPIC 1 Coherent radiator

each electron hit that passes a set of consistency checks developed to strongly reduce

background and random electron hits not associated with a bremsstrahlung event.

The photon timing information is used to select the photon that initiated the reaction

and its energy is used to reconstruct the reaction channel. Additional information

that is needed for the analysis is also saved, such as the reaction vertex from the

MVRT bank, information about the run from the HEAD bank, and the incident

photon-polarization orientation and coherent-edge position from the EPIC bank.
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4.2 Exclusion of bad TOF scintillator paddles

The timing information used for particle identification comes from the time-of-flight

detector. Ideally, the timing calibration would be of equal quality for all the paddles.

Typically, however, some paddles are unstable with time, while others have a very low

efficiency. In such cases the timing calibration procedure fails and the reconstructed

times are wrong. If kept in the analysis, particles detected in such paddles would

not be identified properly and will contribute to the background. In order to reduce

background events, we have studied the performance of the TOF detector, identified

problematic paddles, and removed the corresponding events from our data sample.

Figures 4.1, 4.2, and 4.3 show the number of protons, π+, and π−, respectively, for

each TOF paddle in each sector. The yields are obtained after particle identification

was done. The choice of logarithmic scale for the y axis emphasizes paddles for which

the application of the PID criteria leads to significant reduction in particle yields.

Paddles with yields that are at least an order of magnitude smaller than the yields

of the neighboring paddles, systematically for all particle yields, are removed from

the analysis. For example, paddles 44 and 46 in sector 6 have about 10 times smaller

number of events than the neighboring paddles 43, 45, and 47, for proton, π+, and

π−, and are excluded from the analysis.
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Figure 4.1 Proton event distributions as a function of TOF paddle number for

each CLAS sector. Paddles with bad timing, leading to significant loss of events

after applying particle-identification criteria, show as dips in the distributions and

are excluded from further analysis.
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Figure 4.2 π+ event distributions as a function of TOF paddle number for each

CLAS sector. Paddles with bad timing, leading to significant loss of events after

applying particle-identification criteria, show as dips in the distributions and are

excluded from further analysis.
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Figure 4.3 π− event distributions as a function of TOF paddle number for each

CLAS sector. Paddles with bad timing, leading to significant loss of events after

applying particle-identification criteria, show as dips in the distributions and are

excluded from further analysis.

Table 4.2 lists all TOF paddles that were removed from the analysis; tracks with

hits in any of those paddles were not used. The removal of these tracks reduces the

detector acceptance. It does otherwise not affect the extraction of the polarization

observables from asymmetry measurements.
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Table 4.2 List of bad TOF paddles excluded in the analysis.

Sector Paddle Number

1 17 36 56

2 44 45 54

3 23 35 44

4 23 49

5 23 52 53 55

6 41 44 46

4.3 Reaction Vertex

The goal of this work is to extract polarization observables on the free proton for

the reaction of interest. However, the polarized target in the experiment contains

not only polarized unbound protons but also nucleons bound in the nuclei of carbon

and oxygen. In addition, the target window contains aluminum. Nuclear reactions

on the bound nucleon produce significant background that needs to be subtracted

in the analysis. Since one cannot separate kinematically this background from the

events of interest, the g9a ran with two additional unpolarized targets, a carbon and

a polyethylene foils installed downstream of the butanol (see Chapter 3). The carbon

target was used to study the bound-nucleon background. In the g9a experiment,

however, events from a reaction vertex close to the carbon target were contaminated

with events off free, unpolarized hydrogen. The effect of this hydrogen contamination

was accounted for in the subsequent analysis; see Sec. 5.4. Events from all the

targets were collected in the data sample. In order to identify the target in which the
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reaction occurred (butanol, carbon, or polyethylene), the reaction vertex recorded in

the MVRT bank is used. For the analysis of the polarized target asymmetry, the data

of events that originated in the butanol target are used. Events that originate from

the carbon and polyethylene targets are used for background subtraction and yield

normalization, respectively. The reaction vertex is also used to determine the vertex

time of the reaction from the photon time at the tagger.

The final-state particles in the γp → pπ+π− reaction can result from direct pro-

duction or resonance decay. There are three main resonances, ∆++, ∆0, and ρ0 [8],

which can contribute to this reaction. Their very short lifetimes (∼ 10−24 s) result in

decay path-lengths that are much shorter than the detectors’ resolution. Therefore,

it is reasonable to assign to all the final-state particles the same reaction vertex.

The x, y, and z components of the reaction vertex recorded in the MVRT bank

were determined by a least-squares fit to the reconstructed tracks, minimizing the

distance of closest approach between them. Figure 4.4 shows the distribution of our

2- and 3-charged-track events over the z-component of the vertex. Events originating

in the butanol target form the broad peak centered at 0 cm and are selected with a z-

vertex cut between −3 and 3 cm, removing contamination from events that originate

in the carbon target. Events originating in the carbon form a peak at 6 cm and are

selected with a z-vertex cut between 5 cm and 9 cm. The peak at 16 cm is due to

events coming from the polyethylene target.

In addition to the z-vertex cut, x- and y-vertex cuts were applied to exclude

events that originate outside of the target. To accommodate the cylindrical shape of

the FROST target, a circular cut of radius of 1.5 cm was applied. Figure 4.5 shows

a two-dimensional distribution of the x and y vertex components of the two- and

three-charged track events, as well as the cut applied.
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Figure 4.4 Event distribution over the z-component of the reaction vertex. The
solid red lines indicate the cut selecting events originating in the butanol target,
while the solid green lines show the cut applied to select events produced in the
carbon target. The peak at 16 cm contains events from the polyethylene target.
One can see that the CLAS provides a reasonable resolution to separate between
the targets of interest in g9.

4.4 Particle identification

Particles were identified by means of the time-of-flight (TOF) technique. The mea-

sured time of flight for each track was compared with values that were calculated

using path-length and momentum information from the drift chambers and an as-

sumption about the particles’ mass. The calculated and the measured values agree if

the asummed mass is the mass of the detected particle. Table 4.3 lists the nominal

mass of each candidate particle. ∆TOF is the difference of the two time of flights

∆TOF = TOFmeas − TOFcalc. (4.1)

The track was then assigned the nominal mass of the candidate particle if |∆TOF |

was within a predetermined cut range (±2 ns for protons and ±1 ns for π mesons).

The value TOFmeas in Eq. (4.1) was measured by the time-of-flight detector,

whereas the TOFcalc, was calculated using the particle’s path length, L, from tracking
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Figure 4.5 Distribution of the reaction-vertex x and y components (transverse to
the beam line). The black circle indicates the radial vertex cut applied in this
analysis.

Table 4.3 The nominal masses of candidate particles and the notation used for
each track to identify the final-state particles.

Candidate Mass (MeV) Time Difference

p 938.27 ∆TOFproton
π+ 139.57 ∆TOFπ+

π− 139.57 ∆TOFπ−

and the calculated particle’s speed, βcalc,

TOFcalc = L · 1
βcalc

. (4.2)

The value, βcalc, was calculated using the measured momentum from the drift cham-
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bers and an assumption about the particle’s mass (see Tabel 4.3)

βcalc = p√
p2 +m2

assumedc
2
. (4.3)

For p/π+ separation, two ∆TOF values were calculated; one assuming a proton

mass (∆TOFproton) and one assuming a π+ mass (∆TOFπ+). The ∆TOF that is

within the cut range identifies the particle. If both ∆TOF values are outside of the

cut ranges the event is removed from subsequent analysis. The same holds if both

∆TOF values were within the cut ranges, since particle identification could not be

performed. The negative track is identified as π−, if the ∆TOFπ− value is within

the cut range. Figures 4.6 and 4.7 show ∆TOF as a function of momentum for the

positive tracks, assuming a π+ and a proton mass, respectively, while Fig. 4.8 shows

the ∆TOF as a function of momentum for negative tracks. The red lines indicate

the cut used to identify the particles.

4.5 Photon selection

As mentioned before, photon selection is necessary for the reaction reconstruction.

The photon selection is done using the time coincidence at the event vertex be-

tween the photon and the particles detected in CLAS. The tagger timing resolution

(∼ 110 ps) allows to distinguish events that originate from different beam bunches

(produced every 2 ns) and to identify the photon that initiated the reaction. The

coincidence vertex time is determined as

∆tvertex = tTAGR − tCLAS, (4.4)

where tTAGR and tCLAS are the time of the photon and the particle time, respectively,

at the event vertex. The photon time at the center of CLAS, Ttag, is reconstructed

by the tagger software using the electron hit timing information. Propagation of the

photon to the event vertex is taken into account in the calculation of tTAGR

tTAGR = Ttag + zvertex
c

. (4.5)
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Figure 4.6 ∆TOFπ+ distribution as a function of momentum. The solid red lines
indicate the cut used to identify the π+. The high-intensity structure at
∆TOFπ+ > 0 is due to true protons. The structure, which crosses the cut contains
events with bad TOF paddles. These events are removed with the exclusion of bad
TOF paddles. At ∆TOFπ+ < 0 and low momenta one can discern structures
containing positrons and positively-charged muons.

The vertex time for each track, tCLAS, was calculated using time-of-flight infor-

mation (hit time, Ttof , and path length from event vertex, Ltof ) and the track’s

calculated speed using its nominal mass (after particle identification)

tCLAS = Ttof −
Ltof
βcalc

. (4.6)

The coincidence time ∆tvertex is calculated for each reconstructed photon and

each track. Figure 4.9 shows the coincidence times using all final-state particles after

particle identification. Typically, in CLAS analyses the photon that initiated the

reaction is chosen as the photon that produces the smallest coincidence time ∆tvertex

with the fastest final-state particle. In an attempt to reduce background channels,

as well as events with recorded tracks that originate from different beam bunches,

the photon selection in this anslysis contains additional criteria. Specifically, all

reconstructed final-state tracks must yield ∆tvertex that selects the same photon. The
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Figure 4.7 ∆TOFproton distribution as a function of momentum. The solid red
lines indicate the cut used to identify the protons. The high-intensity stripe at
∆TOFproton < 0 contains true π+.

Figure 4.8 ∆TOFπ− distribution as a function of momentum. The solid red lines
indicate the cut used to identify the π−. At ∆TOFπ− < 0 and low momenta one can
discern structures containing electrons and negatively-charged muons.
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Figure 4.9 Vertex time difference distribution and ±1 ns cut range for
photon-CLAS coincidences.

photon selected for each track is the one that results in the smallest coincidence time.

In addition to this, if the selected photon is associated with a coincidence time larger

that ±1 ns the event is removed from subsequent analysis (see Fig. 4.9). Finally,

events in which all final-state particles yield more than one photon within the ±1 ns

timing coincidence window, are also removed from subsequent analysis.

4.6 Identification of the reaction channel

Due to the limited CLAS acceptance, not all three final-state particles in the reaction

γp → pπ+π− are always detected. It was mentioned before that with the use of the

missing-mass technique the reaction can be reconstructed by detecting two of the

three final-state particles. Four different cases, or topologies, are used to reconstruct

this reaction, as described in Table 4.4. The reaction is then reconstructed separately

for each topology using its associated data. For example, topology 1 contains only

events in which three final-state particles (two positive and one negative) are detected
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Table 4.4 Topology classification.

Topology 1st positive track 2nd positive track Negative track

1 p π+ π−

2 Missing π+ π−

3 p Missing π−

4 p π+ Missing

in CLAS, whereas topologies 2 and 3 contain only events with two final-state particles

(one positive and one negative) detected in CLAS.

The missing-mass technique makes use of the four-momentum-vector conservation

in an exclusive reaction. The four-momentum conservation of the γp → pπ+π−

process states

p̃γ + p̃target = p̃p + p̃π+ + p̃π− , (4.7)

where p̃i is the four vector of the particle i. For topologies 2 – 4, where one of the

final-state particles is missing, four-momentum conservation yields

p̃missing = p̃γ + p̃target − p̃π+ − p̃π− for Topology 2,

p̃missing = p̃γ + p̃target − p̃p − p̃π− for Topology 3,

p̃missing = p̃γ + p̃target − p̃p − p̃π+ for Topology 4. (4.8)

Using Eq. (4.8), the invariant-mass squared of the missing particle is calculated as

the square of its four-momentum

MM2 = (p̃missing)2 = E2
missing − ~P 2

missing. (4.9)

Figures 4.10 – 4.13 show the missing-mass squared distributions calculated using

Eq. (4.9) for events from the butanol target and for all topologies. For each topology

the distribution contains a gaussian peak at the mass-squared of the missing particle,

containing events produced off free protons, and a background. Quasi-free production

off bound nuclei does not lead to such a narrow missing-mass peak due to significant
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smearing caused by Fermi motion. A missing-mass cut is applied to identify the

missing particle and select the reaction. For the subsequent extraction of polarization

observables, for each topology, only events within a ±2σ range from the mean of the

gaussian peak in the missing-mass distributions were used. The same cut ranges were

also applied to the scaled carbon distribution to calculate the dilution factors (see

Chapter 5).
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Figure 4.10 Missing-mass squared distribution in γp→ π+π−X for butanol-target
events of topology 1 (all particles detected).

In topology 1, there is no particle missing, p̃misssing = 0. Due to finite detector

resolution the missing-mass squared distribution shows in this case a narrow asym-

metric peak centered at zero. However, the bound-nucleon background is easier to

determine in a distribution of the missing-mass squared in the γp→ π+π−X reaction,

although the proton has been detected in topology 1; Fig. 4.10.

Topology 3 shows a very interesting structure; see Fig. 4.12. A clear peak indi-

cating the missing π+ is seen along with an additional peak located at slightly lower

values of missing-mass squared. This interesting feature of topology 3 was found to

be a result from a reaction off a bound neutron in the butanol target. Specifically,

events with detected p and π− could also come from the γn → pπ− reaction. Fig-
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Figure 4.11 Missing-mass squared distribution in γp→ π+π−X for butanol-target
events of topology 2 (p undetected). The shoulder at the low MM2 side of the peak
is due to background events.
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Figure 4.12 Missing-mass squared distribution in γp→ pπ−X for butanol-target
events of topology 3 (π+ undetected). The peak at MM2 < 0 is due to background
events off bound neutrons, γn→ pπ−.

ure 4.14 shows the missing-mass squared in γp→ pπ−X as a function of the invariant

mass of the pX pair. Two peaks are visible; one from the γp→ π+π−p reaction with

X = π+ and one from the background reaction γn → pπ− with X = 0. To reduce

contributions from this reaction, a two-dimensional cut was applied that preserves
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Figure 4.13 Missing-mass squared distribution in γp→ pπ+X for butanol-target
events of topology 4 (π− undetected).
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Figure 4.14 Missing-mass squared of γp→ pπ−X. vs. invariant mass of pX pair.
The left peak is from the reaction γn→ pπ−, X = 0, and the right is from the
double-pion photoproduction reaction, X = π+.

most of the events from the γp → pπ+π− reaction. This cut is indicated by the red

line in Fig. 4.14. The result of this cut is depicted in Fig. 4.15, which shows the

missing mass squared of the reaction γp → pπ−X before (red histogram) and after

(black histogram) the two-dimensional cut mentioned above.
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Figure 4.15 Missing-mass squared distributions of topology 3, γp→ pπ−(π+)
before (red curve) and after (black curve) the two-dimensional cut shown in
Fig. 4.14. One sees that the cut significantly reduces background contribution from
γn→ pπ− events.
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Chapter 5

Data Analysis: Asymmetries and polarization

observables

After the reconstruction of the reaction channel, experimental asymmetries were de-

termined from linear combinations and ratios of yields from various beam and target

polarization configurations. The polarization observables were extracted by simple

fits to those expressions. This chapter covers the main steps taken to construct these

asymmetries and determine the polarization observables of the reaction γp→ pπ+π−.

5.1 Construction of asymmetry

Equation (2.5) indicates how the reaction rate I depends on the polarization observ-

ables of interest and the angle β, defined as the angle between the scattering plane

and the orientation of the photon polarization. During this experiment, data were

collected using two orientations of the photon polarization; one parallel to the Hall-B

floor (Para or ||), and the other perpendicular to the Hall-B floor (Perp or ⊥). The

angle β can be calculated using the azimuthal angle φlab of the reaction plane as

measured by the CLAS detector, and an angle α that denotes the orientation of the

photon polarization in the lab,

β = α− φlab. (5.1)

Figure 5.1 shows the angle β and how this is calculated using the orientation of

the photon polarization orientation (angle α). Specifically, the angle β for the Para
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(α = 0) and Perp (α = π/2) orientation of the photon polarization are

β = −φlab for Para orientation, (5.2)

β = π

2 − φlab for Perp orientation

Lab-y axis
(Beam polarization: Perpendicular)

Scattering Plane
β

Lab-x axis

ɸlab

0

π

α = π/2
β = π/2 - ɸlab

π

0

Lab-y axis

Scattering Plane

β Lab-x axis
(Beam polarization: Parallel)

ɸlab

0

π
π
0

α = 0
β = - ɸlab

Figure 5.1 A visual representation of the angle β that denotes the angle between
the scattering plane and the orientation of the photon polarization for the Perp
(left) and Para (right) orientation.

The β-angular dependence of the reaction rate can then be expressed as functions

of the lab angle, φlab,

for Para


sin 2β = − sin 2φlab,

cos 2β = cos 2φlab
(5.3)

for Perp


sin 2β = sin 2φlab,

cos 2β = − cos 2φlab
(5.4)

The production rate, or reaction cross section, for the four different configuration

of target (+ or −) and photon polarization (⊥ or ||) can be written in terms of the
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angle φlab (using Eq. (5.3) and Eq. (5.4))

σ⊥+ = σ0{(1 + Λ · Pz) + δ[sin 2φlab(Is + Λ · P s
z )− cos 2φlab(Ic + Λ · P c

z )]}

σ
‖
+ = σ0{(1 + Λ · Pz) + δ[− sin 2φlab(Is + Λ · P s

z ) + cos 2φlab(Ic + Λ · P c
z )]}

σ⊥− = σ0{(1− Λ · Pz) + δ[sin 2φlab(Is − Λ · P s
z )− cos 2φlab(Ic − Λ · P c

z )]}

σ
‖
− = σ0{(1− Λ · Pz) + δ[− sin 2φlab(Is − Λ · P s

z ) + cos 2φlab(Ic − Λ · P c
z )]},

(5.5)

with Λ and δ representing the degree of target and photon polarizations (the signs

that result from the scalar product of ~Λ with the polarization observables are already

incorporated in the above equations).

Linear combinations of the different polarized cross section allow to isolate the

observables of interest. Three linear combinations of the cross sections in Eq. (5.5)

are used to isolate the unpolarized cross section, the single-polarization observable

Pz, and the double-polarization observables P s
z and P c

z .

(σ⊥+ + σ
‖
+) + (σ⊥− + σ

‖
−) = 4σ0

(σ⊥+ + σ
‖
+)− (σ⊥− + σ

‖
−) = 4σ0ΛPz

(σ⊥+ − σ
‖
+)− (σ⊥− − σ

‖
−) = 4σ0δΛ(sin 2φlab · P s

z + cos 2φlab · P c
z ) (5.6)

The construction of asymmetries significantly simplifies the extraction of the po-

larization observables by removing detector acceptance effects and systematic un-

certainties that are related in the determination of the unpolarized cross section σ0.

Two cross-section asymmetries allow the determination of the single- and double-

polarization observables, respectively:

(σ⊥+ + σ
‖
+)− (σ⊥− + σ

‖
−)

(σ⊥+ + σ
‖
+) + (σ⊥− + σ

‖
−)

= ΛPz (5.7)

(σ⊥+ − σ
‖
+)− (σ⊥− − σ

‖
−)

(σ⊥+ + σ
‖
+) + (σ⊥− + σ

‖
−)

= δΛ(sin 2φlab · P s
z + cos 2φlab · P c

z ). (5.8)

In this analysis, similar expressions for the experimental yield asymmetries were

fit with constant and trigonometric functions to determine Pz and P s
z and P c

z , respec-
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tively. The following sections discuss how these asymmetries can be calculated using

the polarized yields.

5.2 Experimental yields

Different polarization orientations of both the beam and target affect the polarized

cross sections, which are reflected in the experimental yields; Y ⊥+ , Y ‖+, Y ⊥− and Y
‖
−

(see Fig. 5.2).
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Figure 5.2 The yields for 4 various configurations, where the upper left is the yield
of Y ⊥+ , the upper right is that for Y ‖+, the lower left is that for Y ⊥− and the lower
right is that for Y ‖− as a function of the azimuthal angle φlab. The four yields are
examples from topology1 and photon energy of 1.3 GeV.

The yields from various beam and target polarization orientations have been ob-

tained from different runs, thus a relative normalization of the yields to the luminosity

on those runs is necessary for any further analysis to make the yields comparable.

The normalization is implemented by the total number of events from the unpolar-

ized polyethylene target without any cut, ηi, for each polarization configuration i.
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The value of ηi is a measure of the photon flux. It is independent of the butanol

target polarization and, if integrated over all azimuthal angles, independent of the

photon beam polarization. Although the carbon target is also unpolarized, it was not

used for normalization as it was already used for the background subtraction. The

normalized yield, Yi, was then obtained from the raw yield, Y Raw
i ,

Yi = Y Raw
i

ηi
(5.9)

The polarized yields in one kinematic bin can be calculated by integrating the

polarized cross sections folded with the detector acceptance A over the width of the

kinematic variables (∆τ and ∆φlab) defining that bin. The polarized yield for one of

the polarization configurations is then expressed as,

Y = c
∫

∆τ

∫
∆φ
σ0(τ)(1 + P1(τ) + P2(τ) sin 2φ) · A(τ, φ)dφdτ (5.10)

The variable τ represents all the other kinematic variables in which the yield is

integrated over, such as the polar angle and invariant masses IMpπ+ , IMπ−π+ . In

Eq. (5.10), P1 = ΛPz represents the single polarization-observable, while P2 = δΛP s
z

represents the double polarization-observables; the term proportional to P c
z has been

neglected to simplify the expressions. The results for P s
z apply to P c

z also.

Under the assumption that the acceptance does not change much within a φ bin,

∫
∆τ

∫
∆φ

A(τ, φ)dφ dτ ≈
∫

∆τ

A(τ, φi)∆φ dτ,

∫
∆τ

∫
∆φ

A(τ, φ) sin 2φ dφ dτ ≈
∫

∆τ

A(τ, φi) sin 2φi sin ∆φ dτ,

Eq (5.10) can be simplified further,

Y (φi) ≈ c
∫

∆τ

σ0(τ) [∆φ+ P1(τ)∆φ+ P2(τ) sin 2φi sin ∆φ]A(τ, φi) dτ
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With a new constant, c′ = c
∫

∆τ
σ0(τ)A(τ, φi)∆φ dτ , the yield can be expressed as,

Y (φi) ≈ c′

∫
∆τ
σ0(τ) [∆φ+ P1(τ)∆φ+ P2(τ) sin 2φi sin ∆φ]A(τ, φi) dτ∫

∆τ
σ0(τ)A(τ, φi)∆φ dτ

= c′

1 +

∫
∆τ
σ0(τ)P1(τ)A(τ, φi) dτ∫
∆τ
σ0(τ)A(τ, φi) dτ

+

∫
∆τ
σ0(τ)P2(τ)A(τ, φi) dτ∫
∆τ
σ0(τ)A(τ, φi) dτ

sin 2φi
sin ∆φ

∆φ



= c′
[
1 + P̄1(φi) + P̄2(φi) sin 2φi

sin ∆φ
∆φ

]
. (5.11)

Through the experimental yield the experiment has therefore access to the unpo-

larized cross section and acceptance weighted averages of the polarization observables.

These weighted averages are determined in the present analysis. The φ dependence

in the averages P̄1(φi) and P̄2(φi) disappears exactly if the acceptance of the CLAS

factorizes, A(τ, φ) ≈ A(τ)A(φ). In the following we assume that averages are inde-

pendent of φ. The term sin ∆φ/∆φ in Eq. (5.11) accounts for a reduction in the

amplitude of the angular distribution when the distribution is binned over finite bin

sizes, ∆φ. The extracted double-polarization observables have been corrected for this

effect.

5.3 Determination of asymmetries

In Eqs. (5.7) and (5.8) it was assumed that the beam and target polarization degrees

are the same for all four polarization configurations. However, in the experiment

events from different runs were taken with degrees of beam and target polarizations.

For the four different setups, the degrees of beam and target polarizations are, δ⊥+,

δ
‖
+, δ⊥−, δ

‖
− and Λ⊥+, Λ‖+, Λ⊥−, Λ‖−, respectively. As a consequence, the cross sections

are
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

σ⊥+ = σ0
{

(1 + Λ⊥+Pz) + δ⊥+[sin 2φlab(Is + Λ⊥+P s
z )− cos 2φlab(Ic + Λ⊥+P c

z )]
}

σ
‖
+ = σ0

{
(1 + Λ‖+Pz) + δ

‖
+[− sin 2φlab(Is + Λ‖+P s

z ) + cos 2φlab(Ic + Λ‖+P c
z )]
}

σ⊥− = σ0
{

(1− Λ⊥−Pz) + δ⊥−[sin 2φlab(Is − Λ⊥−P s
z )− cos 2φlab(Ic − Λ⊥−P c

z )]
}

σ
‖
− = σ0

{
(1− Λ‖−Pz) + δ

‖
−[− sin 2φlab(Is − Λ‖−P s

z ) + cos 2φlab(Ic − Λ‖−P c
z )]
}
.

(5.12)

Figure 5.3 shows the values of both beam (upper panel) and target (lower panel)

polarizations for various nominal coherent edge settings.

As before, linear combinations of the polarized cross sections, Eq. (5.12), can be

used to isolate the single- and double-polarization observables if the differences in the

degrees of the beam and target polarizations are taken into account. This is done by

scale factors, which are the ratios of the polarization degrees:

s1 = Λ‖+
Λ⊥+

, s2 = Λ‖−
Λ⊥−

, s5 = δ
‖
+

δ⊥+
, s6 = δ

‖
−

δ⊥−
, (5.13)

and factors, which are combinations of those,

s3 = δ
‖
+ + s1δ

⊥
+

δ
‖
− + s2δ⊥−

, s7 = Λ‖+ + s5Λ⊥+
Λ‖− + s6Λ⊥−

, s8 = 1 + s5

1 + s6
. (5.14)

As the target polarization is independent of the orientation of the beam polar-

ization, as seen in Fig. 5.3, the scale factors s1 and s2 are approximately one, and

consequently also the scale factors s3 and s8. An overview over all scale factors for

the various photon energy settings is given in Fig. 5.4.

With these scale factors the linear combinations of the polarized cross sections

are
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Figure 5.3 The polarization degrees for different polarization configurations. The
upper panel shows is the beam polarizations for all four cases and the down panel
shows represents the target polarization degrees.
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Figure 5.4 The values for the scale factors. Most of the constants are very close to
one. However, the constant s7, which is dominated by the asymmetries between
positive and negative target polarization orientations, differs from one significantly.



(s1σ
⊥
+ − σ

‖
+)− s3(s2σ

⊥
− − σ

‖
−) = σ0 {Ca

1 + Ca
2 (sin 2φlabP s

z − cos 2φlabP c
z )}

(s5σ
⊥
+ + σ

‖
+)− s8(s6σ

⊥
− + σ

‖
−) = σ0 {Cc

1Pz + Cc
2(sin 2φlabP s

z − cos 2φlabP c
z )}

(s5σ
⊥
+ + σ

‖
+) + s7(s6σ

⊥
− + σ

‖
−) = σ0

{
Cd

1 + Cd
2 (sin 2φlabP s

z − cos 2φlabP c
z )
}
,

(5.15)

where the constants C are expressions of the beam and target polarizations. Their

experimental values are shown in Fig. 5.5. These values are used in the analysis. To

a very good approximation

Ca
1 ≈ Cc

2 ≈ Cd
2 ≈ 0, (5.16)

Ca
2 ≈ 4Λ̄δ̄, (5.17)

Cc
1 ≈ 4λ̄, (5.18)

Cd
1 ≈ 4, (5.19)
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Figure 5.5 Experimental values of the constants C.

where Λ̄ and δ̄ are the average degrees of the beam and target polarizations, respec-

tively. The constants Ca
1 , Cc

2, and Cd
2 describe small admixtures to the leading term

in the combinations of polarized cross sections, Eq. (5.15). They are typically < 0.5%

and the approximation Eq. (5.16) is used in the analysis. For the other constants the

experimental values are used. The cross-section asymmetries are then given by



(s1σ
⊥
+ − σ

‖
+)− s3(s2σ

⊥
− − σ

‖
−)

(s5σ⊥+ + σ
‖
+) + s7(s6σ⊥− + σ

‖
−)

= Ca
2

Cd
1

(sin 2φlabP s
z − cos 2φlabP c

z )

(s5σ
⊥
+ + σ

‖
+)− s8(s6σ

⊥
− + σ

‖
−)

(s5σ⊥+ + σ
‖
+) + s7(s6σ⊥− + σ

‖
−)

= Cc
1

Cd
1
Pz

(5.20)

5.4 Background subtraction

The derivation of asymmetries Eq. (5.20) in the previous section is based on the

assumption of a free polarized proton target without any background. However, in

the FROST experiment, the butanol target contains not only the free protons, but

also the bound, unpolarized nucleons. The background subtraction is necessary in
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order to exclude the effect from bound nucleons. The scale and dilution factors

are introduced to estimate the background. Scale factor (denoted as symbol α) is

principally the ratio between the number of bound protons in the butanol target and

that in the carbon target, while the dilution factor is the ratio of the free-proton yield

in the butanol target to the total yield in the butanol target.

The yields from the butanol and carbon targets are the measured quantities of the

experiment, from which the asymmetries, the background contribution, and finally

the observables are obtained. As discussed earlier, the CLAS acceptance cancels in

the yield asymmetries. Table 5.1 gives a set of measurable and derived yields which

help to evaluate the background in the following sections.

Table 5.1 Yields from various targets (butanol and carbon) and nuclei (free
protons and bound protons).

Symbol Explanation Measurable

YBut Yield of Butanol Yes

YCar Yield of Carbon Yes

Y0 Unpolarized Yield from free nuclei in butanol No

Yb Unpolarized Yield from bound nuclei in butanol No

Yf Unpolarized Yield from free protons in carbon No

YBut and YCar are the total normalized yields from butanol and carbon targets,

respectively, which include the yields from free and bound protons,



YBut = Y0(1 + ΛPz + δ[sin 2φlab(Is + ΛP s
z )− cos 2φlab(Ic + ΛP c

z )])

+ Yb(1 + δ[sin 2φlabI ′s − cos 2φlabI ′c])

αYCar = Yf (1 + δ[sin 2φlabIs − cos 2φlabIc]) + Yb(1 + δ[sin 2φlabI ′s − cos 2φlabI ′c])
(5.21)

The primed polarization observables are the beam polarization observables for the

quasi-free reaction off bound nucleons. After scaling the yield off the carbon target
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by the scale factor α, the bound-nucleon yield in YBut matches that in YCar.

Determination of the scale factor

Both the butanol and carbon targets contain unpolarized bound nucleons. Events off

the carbon target were taken as measure of the background from quasi-free production

off these nuclei. The side bands in the missing mass distributions are similar in shape

for both targets in a given kinematic bin. The fraction of bound-nucleon background

in butanol-target events can therefore be estimated by scaling the carbon-target yield

to that of butanol to fit the side bands in the missing-mass-square distributions,

Nb(MM2) = αNc(MM2) +NH exp
−1

2

(
MM2 − µ

σ

)2
 . (5.22)

The scale factor α and the peak parameters µ, σ, and NH were fit parameters.

The first parameter is α, the coefficient of the missing mass squared for carbon,

which represents the scale factor. This factor directly determines the background

contribution. The parameters of the Gaussian function, µ and σ, are also important

because the missing mass cut range, mentioned above, is determined from these two

parameters.

The butanol and scaled carbon missing-mass-squared distributions for each of the

four topologies are shown in Fig. 5.6 for the kinematic bin with W = 1.59 GeV and

ΦCM = 285◦. The side bands of both distributions overlap each other. The middle

peak is due to events off polarized free hydrogen. The difference of the butanol and

scaled carbon missing-mass-squared distributions shows the free proton yield; see

Fig. 5.7.

Figure 5.8 shows the scale factors for all the kinematic bins. Each panel shows the

φCM distribution of α for a given Eγ bin. Due to acceptance effects, the scale factor is

not a constant in the experiment. The butanol target has length around 6 cm, sitting

in the center of CLAS detector and carbon target is located 3 cm downstream from the
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Figure 5.6 The missing-mass-squared distributions of butanol- (red) and scaled
carbon-target (blue) events for the four topologies at W = 1.59 GeV and
ΦCM = 285◦.
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Figure 5.7 Difference of the butanol and scaled carbon missing-mass-squared
distributions for the four topologies at W = 1.59 GeV and ΦCM = 285◦.
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Figure 5.8 The scale factors for all the kinematic bins. Each plot shows one of the
energy bins.

center of CLAS. The detector acceptance for butanol-target and carbon-target events

and therefore also their relative yield may differ, due to the different target positions.

In the analysis, the scale and dilution factors were determined independently for each

kinematic bin.

Yield ratio d1

Similar to the linear combinations of the polarized free-proton cross sections, Eq. (5.15),

and with the approximations of Eq. (5.16), the linear combinations of the butanol

yields are



(s1Y
⊥

+But − Y
‖

+But)− s3(s2Y
⊥
−But − Y

‖
−But) = Ca

2Y0(sin 2φlabP s
z − cos 2φlabP c

z )

(s5Y
⊥

+But + Y
‖

+But)− s8(s6Y
⊥
−But + Y

‖
−But) = Cc

1Y0Pz

(s5Y
⊥

+But + Y
‖

+But) + s7(s6Y
⊥
−But + Y

‖
−But) = Cd

1 (Y0 + Yb)
(5.23)

80



www.manaraa.com

The bound-nuclear background contributions cancel in the target-polarization

differences, the first two equations of Eq. (5.23), they are proportional to the free-

proton yield, Y0. The background contributions contribute in the unpolarized, target-

polarization sum, in the last equation. This combination is proportional to the sum

of the unpolarized free-proton and background yields, Y0 + Yb.

The yield asymmetries of the butanol-target events,

(s1Y
⊥

+But − Y
‖

+But)− s3(s2Y
⊥
−But − Y

‖
−But)

(s5Y ⊥+But + Y
‖

+But) + s7(s6Y ⊥−But + Y
‖
−But)

= Ca
2

Cd
1

Y0

Y0 + Yb
(sin 2φlabP s

z − cos 2φlabP c
z )

(s5Y
⊥

+But + Y
‖

+But)− s8(s6Y
⊥
−But + Y

‖
−But)

(s5Y ⊥+But + Y
‖

+But) + s7(s6Y ⊥−But + Y
‖
−But)

= Cc
1

Cd
1

Y0

Y0 + Yb
Pz

(5.24)

are diluted relative to the free-proton asymmetries, Eq. (5.20), by a factor,

h = Y0

Y0 + Yb
(5.25)

This dilution factor, h, is a measure of how much smaller the yield asymmetry from

butanol-target events is compared to the asymmetry from polarized protons due to

the background of unpolarized protons in the target.

The ratio of the background-subtracted butanol yield to the total yield off the

butanol target,

d1 = 1− α (s5Y
⊥

+Car + Y
‖

+Car) + s7(s6Y
⊥
−Car + Y

‖
−Car)

(s5Y ⊥+But + Y
‖

+But) + s7(s6Y ⊥−But + Y
‖
−But)

= Cd
1 (Y0 + Yb)− Cd

1 (Yf + Yb)
Cd

1 (Y0 + Yb)

= Y0 − Yf
Y0 + Yb

,

(5.26)

is only approximately equal to the dilution factor due to the contribution of free-

proton events from the hydrogen contamination of the carbon target, Yf . The deter-

mination of Yf is discussed in the following section.

Experimental values of the extracted yield ratio, d1, are shown in Fig. 5.9 as a

function of the lab azimuthal, φlab. The yield ratio is approximately independent
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of φlab. Some more significant deviations from the constant behavior at the highest

values of W need to be looked at in a more detailed study.
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Figure 5.9 The approximate dilution factors, d1, for all the kinematic bins. Each
plot shows one of the energy bin. The average approximate dilution factors are
obtained by the constant fit, which can effectively cancel out the impact from
observables.

Hydrogen contamination of the carbon target

In the g9a run of the FROST experiment, the downstream side of the carbon target

was contaminated with hydrogen. Events from the carbon target are no longer a pure

sample of events off bound nuclei. One of the approaches to solve this problem is to cut

away the contaminated region in a z-vertex cut. As a consequence a large amount of

events would be lost and statistical uncertainties would increase dramatically. Since

the contamination is independent of a particular reaction or kinematic bin under

study, the yield ratio of events off unpolarized protons in the carbon target, Yf , to

events off polarized protons in butanol target, Y0,

d2 = Yf
Y0
, (5.27)
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is constant for the whole experiment. The ratio is determined by a fit to the bound-

nucleon background in the missing-mass-squared distribution. Figure 5.10 illustrates

the procedure of the determination of the ratio d2 for various Eγ bins. The butanol

missing-mass distribution is shown in red and the carbon distribution in blue.

Missing Mass Squared (GeV2) Missing Mass Squared (GeV2) Missing Mass Squared (GeV2)

Missing Mass Squared (GeV2)Missing Mass Squared (GeV2)Missing Mass Squared (GeV2)

Missing Mass Squared (GeV2) Missing Mass Squared (GeV2)

Figure 5.10 The fits to obtain the dilution factor d2. The red histogram is the
missing-mass squared distribution from the butanol target. The blue histogram is
the scaled carbon missing-mass squared distribution and the green curve is the fit to
the side bands. The eight panels are for eight photon-energy bins.

The missing-mass-squared distributions for both butanol- and carbon-target events
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are scaled such that the side bands fit each other. The side bands (excluding a 3σ

region around the peak) of the carbon missing-mass-squared distribution were fit with

Fbound = p0e
− (MM2−p1)2

2p2
2 + (p3 + p4MM2), (5.28)

reproducing the background shape due to bound nuclei for both butanol and carbon

targets. The fits to the sidebands are shown as green curves in Fig. 5.10 and describe

the bound-nucleon background. The black curve shows a fit of the carbon missing-

mass-squared distribution including the free-proton peak.

The ratio d2 was then determined from the background subtracted carbon and

butanol yields,

d2 =
∑
YCar(MM2)− Fbound(MM2)∑
YBut(MM2)− Fbound(MM2) = Yf

Y0
(5.29)

Figure 5.11 gives the results for eight photon-energy bins. The data were fit with a

Figure 5.11 The fraction of carbon-to-butanol free-proton yields, d2. The red line
is a constant fit to the d2 ratio with a χ2 per degree of freedom of 0.83.

constant to get the mean value and uncertainty of d2. The normalized χ2 test shows

that the assumption of an energy independent (constant) value of d2 is justified. The

final value of d2 is determined to be 0.236± 0.004. This value is consistent with the

value of 0.228± 0.011, which was found for the g9a experiment in an analysis of the

γp→ π+n reaction channel [68].
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The dilution factor h is finally calculated from the ratios d1 and d2,

h = d1

1− d2
= Y0

Y0 + Yb
(5.30)

5.5 Extraction of observables

φ0 offset

The φ0 angle is an offset of the actual photon beam-polarization direction from its

nominal par and perp directions, due to a mis-alignment of the diamond crystal-

lattice plane. It is independent of the coherent edge position and other kinematic

variables and needs to be included in the analysis.

The offset cannot be studied in the γp → pπ+π− channel, because the polarized

cross section does depend on both the sin 2φlab and cos 2φlab terms. An angular

offset in φlab only changes the coefficients of these functions, which are the unknown

polarization observables P s
z and P c

z . Josephine McAndrew [78] studied the φ0 offset

from the linearly polarized g9a data in the γp → pπ0 channel with rich statistics.

The angular dependence of the polarized yield in the single-pion reaction channel is

a function of cos 2φlab only. An offset in φlab appears here as unphysical phase shift.

The phase shift can be determined in a fit of the experimental yield asymmetry,

N(φlab)⊥ −N(φlab)‖
N(φlab)⊥ +N(φlab)‖

= δΣ cos(2(φlab − φ0)), (5.31)

where Σ is the beam-spin asymmetry and δ the degree of photon-beam polarization.

Figure 5.12 shows the asymmetry, Eq. (5.31), and the result of the fit with a value of

φ0 = 0.21± 0.23◦ for the offset. The value 0.21◦ was used in this analysis.

The φ0 offset has a ±0.23◦ statistical uncertainty, δφ0, in addition to the 0.21◦

constant offset. The impact of this uncertainty on the extraction of the double-

polarization observables can be seen from the φ angular dependence of the polarized
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Figure 5.12 Cross-section asymmetry in the γp→ pπ0 reaction with fit to obtain
the systematic φ0 angle. This plot shows the asymmetry and the result of the fit to
find angle φ0. The parameter p4 stands for the offset. Analysis of Ref. [78].

cross section,

P s
z sin[2(φ± δφ0)]− P c

z cos[2(φ± δφ0)] (5.32)

=(P s
z cos 2δφ0 ∓ P c

z sin 2δφ0) sin 2φ− (P c
z cos 2δφ0 ± P s

z sin 2δφ0) cos 2φ (5.33)

≈(P s
z ∓ 2P c

z δφ0) sin 2φ− (P c
z ± 2P s

z δφ0) cos 2φ (5.34)

The relative uncertainties of the double-polarization observables due to the uncer-

tainty in the φ0 offset are therefore of the order 2δφ0 ≈ 0.008. The double-polarization

observables extracted from this analysis have values of less than 0.2; the maximum

uncertainty due to φ0 is very small, approximately 0.0016.

Combination of topologies

The analysis of asymmetries and observables are based on a certain topology. How-

ever, due to the acceptance of the CLAS detector, a single topology covers only a

limited range of the full phase space. Combining all four topologies allows to increase

the overall acceptance for this reaction.
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Because the determination of the asymmetry is based on the missing mass cut and

dilution factors, it is impossible to combine the topologies before the asymmetries

constructed; missing-mass-based event selection and dilution factors are different for

each topology.

The combined asymmetry, A, is the weighted average of the asymmetries, Ai, of

each of the four topologies,

A(β) =
∑4
i=1wiAi(β)∑4

i=1 wi
, (5.35)

where the weights wi are given by the statistical uncertainties of the asymmetries

for each topology, σAi
,

wi = 1
σ2
Ai

. (5.36)

The uncertainty of the summed asymmetry is the inverse of the square root of the

summed weights w

σA = 1√∑4
i=1wi

(5.37)

Figures 5.13 to 5.16 show the β angular distributions of the beam-target yield

asymmetries at W = 1.59 GeV for 12 ΦCM bins and topologies 1, 2, 3, and 4.

Figure 5.17 shows their weighted mean value.
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Figure 5.13 Angular distributions of beam-target yield asymmetries for topology 1

(all particles detected) at W = 1.59 GeV. Each panel corresponds to a ΦCM bin;

0 ≤ ΦCM ≤ 360◦.
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Figure 5.14 Angular distributions of beam-target yield asymmetries for topology 2

(missing proton) at W = 1.59 GeV. Each panel corresponds to a ΦCM bin;

0 ≤ ΦCM ≤ 360◦.
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Figure 5.15 Angular distributions of beam-target yield asymmetries for topology 3

(missing π+) at W = 1.59 GeV. Each panel corresponds to a ΦCM bin;

0 ≤ ΦCM ≤ 360◦.
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Figure 5.16 Angular distributions of beam-target yield asymmetries for topology 4

(missing π−) at W = 1.59 GeV. Each panel corresponds to a ΦCM bin;

0 ≤ ΦCM ≤ 360◦.
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Figure 5.17 Angular distributions of beam-target yield asymmetries for combined

data of all four topologies at W = 1.59 GeV. Each panel corresponds to a ΦCM bin;

0 ≤ ΦCM ≤ 360◦.

Results of extracted observables

Fits to the scaled yield asymmetries were made to extract the single- and double-

polarization observables. The fit functions are for the beam-target asymmetries

sin 2φlabP s
z − cos 2φlabP c

z = (s1Y
⊥

+But − Y
‖

+But)− s3(s2Y
⊥
−But − Y

‖
−But)

(s5Y ⊥+But + Y
‖

+But) + s7(s6Y ⊥−But + Y
‖
−But)

Cd
1

Ca
2

1
h

(5.38)

and for the target asymmetries

Pz = (s5Y
⊥

+But + Y
‖

+But)− s8(s6Y
⊥
−But + Y

‖
−But)

(s5Y ⊥+But + Y
‖

+But) + s7(s6Y ⊥−But + Y
‖
−But)

Cd
1

Cc
1

1
h
. (5.39)

The asymmetries are scaled by the factors C to account for the degrees of the

beam and target polarizations and by the factor 1/h to account for the asymmetry

dilution due to the bound-nucleon background. The results for the observables P s
z and

P c
z were also corrected for the effect of the finite bin size sin ∆φ/∆φ; see Eq. (5.11).

As examples, Fig. 5.18 shows the beam-target and Fig. 5.19 shows target asymme-

try curves at W = 1.59 GeV. The asymmetries are fit with Eqs. (5.38) and (5.39).

The figures give also χ2 values for each fit. The 12 panels in each figure shows the
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asymmetries for a different ΦCM bin; weighted mean of all topologies. The extracted

observables, Pz, P s
z and P c

z are discussed in the following Chapter.
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Figure 5.18 The asymmetries for double-polarization observables with W of 1.59
GeV, fitted by the trigonometric function.
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Figure 5.19 The asymmetries for single-polarization observables with W of 1.59
GeV, fitted by a constant value.

The fit quality directly influences the reliability of the final result. Because the fit

method used is the minimization of χ2, the most useful tool to check the quality of

the fit is to check the value of the normalized χ2, which is normalized to the number

of degrees of freedom in the fit. The expectation value for the normalized χ2 value is
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one. The left plot of Fig. 5.20 shows the histogram of all the χ2 from the trigonometric

fit and the right plot is that from the constant fit. It is easy to find from the plots

that most of the χ2 are in between 0.5 to 2 and both distributions peak around 1.

This means that most of the fits are reliable.
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Figure 5.20 The quality of the fit can be reflected by the normalized χ2. The left
plot shows the histogram of all the normalized χ2 from the trigonometric fit and the
right plot is that from the constant fit.
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Chapter 6

Results and Discussion

This chapter shows the extracted observables Pz, P s
z and P c

z in (W,ΦCM) kinematics

bins. TheW range 1.46 – 2.25 GeV is covered by 16 bins and the ΦCM range 0◦ – 360◦

is covered by 12 bins. Each observable exhibits the expected symmetry property of

being either an odd or an even function of ΦCM . Results for an additional binning in

invariant mass are also shown and a comparison with model predictions is discussed.

These observables, extracted for the first time here, will play an important role to

improve the understanding of baryon resonances.

6.1 Results for polarization observables

Two typical examples of the polarization observables Pz, P s
z , and P c

z extracted in this

work, are shown in Fig. 6.1 and Fig. 6.2, for W = 1.59 GeV and for W = 1.67 GeV,

respectively. Parity conservation in the nuclear reaction implies that each observable

is either odd or even under the transformation ΦCM → 2π − ΦCM [52]. Parity

conservation also implies that the odd observables should vanish for ΦCM = 0◦ and

ΦCM = 180◦, when all particles are coplanar. Visual analysis of the distributions

in Fig. 6.2 suggests that Pz and P c
z are odd functions of ΦCM while P s

z is an even

function. To quantify the level of consistency between the experimental estimates and

the expectations, Pz(ΦCM) and P c
z (ΦCM) were each fitted to a series of sine functions,

while P s
z (ΦCM) was fitted to a series of cosine functions

Pz(ΦCM), P c
z (ΦCM) = p1 sin(ΦCM) + p2 sin(2ΦCM) + p3 sin(3ΦCM) + p4 sin(4ΦCM),

(6.1)
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P s
z (ΦCM) = p0 + p1 cos(ΦCM) + p2 cos(2ΦCM) + p3 cos(3ΦCM) + p4 cos(4ΦCM). (6.2)

Terms up to 4th order were kept in the fits, based on previous studies of this reac-

tion [44]. The solid lines in Fig. 6.1 and Fig. 6.2 show the fits. To demonstrate the

quality of the fits we quote in the figures the normalized χ2, which ranges from 0.73

to 3.26. The extracted distributions have the symmetry properties implied by parity

conservation, which supports the reliability of our analysis.
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Figure 6.1 Example azimuthal distributions of the single-polarization observable
Pz and double-polarization observables P c

z and P s
z for W = 1.59 GeV. The solid lines

show fits with sine (to Pz and P c
z ) and cosine (to P s

z ) functions. To demonstrate the
fit quality, the normalized χ2 are reported. The relatively large χ2 value of 3.26 is
for the fit to the observable with the very small statistical uncertainties (smaller
than the symbol size) and may be a signature that the bin-to-bin systematic
uncertainties (not included in the error bars) are not negligible. The experimental
estimates exhibit the symmetry properties expected from parity conservation.

The estimates of the observables Pz, P s
z and P c

z for all kinematic bins are shown in

Fig. 6.3, Fig. 6.4, and Fig. 6.5, respectively. The observables are shown as a function

of ΦCM for fixed W .
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Figure 6.2 Example azimuthal distributions of the single-polarization observable
Pz and double-polarization observables P c

z and P s
z for W = 1.67 GeV. The solid

lines show fits with sine (to Pz and P c
z ) and cosine (to P s

z ) functions. To
demonstrate the fit quality, the normalized χ2 are reported. The experimental
estimates exhibit the symmetry properties expected from parity conservation.

The amplitude of the extracted observables is relatively small, typically less than

0.25. The largest amplitudes and the richest structures of Pz(ΦCM) and P s
z (ΦCM)

are observed at the lowest center-of-mass energies. The variation of the amplitude

of P c
z (ΦCM) with W is more complex. This observable shows significantly non-zero

amplitudes not only at some low and mid center-of-mass energies, but also at the two

highestW bins. The full information about the kinematic evolution of the observables

can be obtained by extracting estimates in 5-dimensional kinematic bins. However,

the statistics collected in g9a does not allow for such a fine binning.

The data are compared with model predictions of Fix and Arenhövel, Ref. [26].

The model values are experimental-yield-weighted mean values of the theoretical re-

sults for each kinematic bin. In this way the finite acceptance of the CLAS detector
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Figure 6.3 Experimental ΦCM distributions of the single-polarization observable Pz
for various center-of-mass energies. The error bars indicate the statistical
uncertainties only. The solid line is the model prediction of [26].

is taken into account in the comparison. The model describes basic features of the

observables well, but not some of the details in the distributions.

Given the sensitivity of the observables to intermediate-resonance excitation,

physics interpretation of the reported results requires comparison with a theoreti-

cal model or/and incorporation in partial-wave or coupled-channel analyses.

6.2 Sensitivity of observables to two-particle invariant mass

In view of the general objective of this work to make a contribution to the study of

baryon resonances, the investigation of the dependence of the polarization observables

on the invariant mass, IM , of a pair of final-state particles has a special importance.
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Figure 6.4 Experimental ΦCM distributions of the double-polarization observable
P s
z for various center-of-mass energies. The error bars indicate the statistical

uncertainties only. The solid line is the model prediction of [26].

This is due to the fact, that the shape of the invariant-mass event distribution is

directly related to the properties of excited resonance states. A typical example is

the event distribution over IM2
pπ+ (shown in Fig. 6.6), where one can clearly identify

a peak positioned at the mass-squared of ∆++. Other intermediate resonances, such

as ρ, which can lead to the pπ+π− final state, also contribute to the invariant-mass

distributions. While very few resonances decaying to πN can be visually identified as

peaks in the invariant mass distribution of their decay particles, by selecting a certain

range in invariant mass, one can suppress events from certain reaction mechanisms

and enhance the contribution of others. To demonstrate the sensitivity of the observ-

ables to the invariant mass of pairs of final-state particles, Pz(ΦCM), P s
z (ΦCM), and
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Figure 6.5 Experimental ΦCM distributions of the double-polarization observable
P c
z for various center-of-mass energies. The error bars indicate the statistical

uncertainties only. The solid line is the model prediction of [26].

P c
z (ΦCM) are extracted in a bin of IM2

pπ+ from 1.2 to 1.8 GeV2. In this mass-squared

range the contribution from intermediate ∆++ is enhanced, while contributions from

ρ or ∆0 are suppressed. Figure 6.7 shows the observables for W = 1.85 GeV without

and with the additional binning in IM2
pπ+ .

The binning in the third kinematic variable does not affect the symmetry prop-

erties of the observables. However, the amplitudes of the observables are clearly

enlarged. Further estimates of the observables in other IM2
pπ+ or in bins of IM2

pπ−

and IM2
π+π+ will be very valuable for the study of baryon resonances in a specific

mass range.
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Figure 6.6 Proton-π+ invariant-mass-squared (IM2
pπ+) distribution for

center-of-mass energy of 1.85 GeV2. One can clearly see the peak due to
intermediate ∆++ resonance. To suppress contributions from non-∆++ mechanisms,
the observables are extracted in IM2

pπ+ bin ranging from 1.2 GeV2 to 1.8 GeV2.
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Figure 6.7 Left: Extracted observables for W = 1.85 GeV2, integrated over the
entire IM2

pπ+ range. Right: Extracted observables for W = 1.85 GeV2 and
IM2

pπ+ ∈ [1.2, 1.8] GeV2. One can clearly see that the selection of this
invariant-mass-squared range enhances the amplitudes of the observables. This
demonstrates the sensitivity of the polarization observables to the underlying
reaction mechanisms.

6.3 Discussion and outlook

This analysis estimated the polarization observables Pz, P s
z , and P c

z in aW range from

1.46 GeV to 2.25 GeV and in the full range of the angle ΦCM between the scattering

and double-pion planes. The observables were extracted from the normalized yields
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by the construction of various yield asymmetries. The single-polarization observable

Pz was extracted by means of a linear fit to the target asymmetry, Eq. (5.39), while the

double-polarization observables were extracted by means of a trigonometric-functions

fit to the beam-target asymmetry, Eq. (5.38). The fit quality was monitored by the χ2

distribution of the fits. The χ2 of all the fits were in in range from 0.5 to 2, indicating

the reliability of the observables extracted. The observables from experimental data

were compared with experimental-yield-weighted model predictions. The comparison

shows that the measured observables will help constrain the model and the model

parameters.

This work presented the initial extraction of the polarization observables Pz, P s
z ,

and P c
z . More studies need to be done in the future. First, the dependence of the

polarization observables on the kinematics of the reaction can be studied in more

detail. Cuts on kinematic variables other than ΦCM , like invariant masses m(pπ+) or

m(π+π−), can help study various decay channels and constrain reaction mechanisms.

Second, the observable extraction is based on binned angular distributions and

the minimization of χ2. Information is lost in the binning and the necessary integra-

tion over unspecified kinematic variables. An alternative is an unbinned maximum

likelihood analysis. However, these analysis are complex and require the knowledge

of the background or dilution factor for each event.

Finally, the FROST experiment has measured the γp→ pπ+π− reaction channel

with linearly polarized photons and longitudinally polarized target (this work), but

also with circularly polarized photon and transversally polarized target. Multiple

analyses have been conducted or are underway, which will result in a large set of new

single- and double-polarization observables. Some of these observables are connected

through inequality relations; see [52]. Different combinations of amplitudes contribute

to the polarization observables. The amplitudes and phases of the amplitudes of the

reaction could be strongly constrained by the set of new observables.
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Figure A.1 The scale factor α for topology 1, where all the final-state particles
detected. Each distribution is a function of ΦCM .
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Figure A.2 The scale factor α for topology 2, where the proton is undetected.
Each distribution is a function of ΦCM .
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Figure A.3 The scale factor α for topology 3, where the π+ is undetected. Each
distribution is a function of ΦCM .
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Figure A.4 The scale factor α for topology 4, where the π− is undetected. Each
distribution is a function of ΦCM .
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Appendix B

Dilution factors
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Figure B.1 The dilution factor d1 for topology 1, where all final-state particles are
detected. Each distribution is a function of ΦCM .
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Figure B.2 The dilution factor d1 for topology 2, where the proton is undetected.
Each distribution is a function of ΦCM .
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Figure B.3 The dilution factor d1 for topology 3 where the π+ is undetected. Each
distribution is a function of ΦCM .
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Figure B.4 The dilution factor d1 for topology 4, where the π− is undetected.
Each distribution is a function of ΦCM .
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